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ABSTRACT

Practical testing guidelines are given for Ada pro-

grams. This involves a general testing strategy supple-

mented with testing guidelines for specialized features.

A general background of testing is given which covers

testing objectives, testing steps, and current testing

approaches for Pascal-like languages. Testing approaches

for Pascal-like languages are given because Pascal is the

base language for Ada. Ada is then analyzed from a test-

ing point of view. Features are identified that are dif-

ferent from Pascal-like languages. The analysis includes

a brief description of each feature and a description of

errors/problems that might occur when using the feature.

The analysis determines whether Pascal-like language

structural testing approaches are adequate for the struc-

tural testing of each feature. If a new structural test-

ing approach is needed for a feature, then testing guide-

lines are presented for that feature. A general testing

strategy is then presented. The general testing strategy

applies to Ada as a whole. The additional structural

testing guidelines for certain features are to supplement

the general testing strategy. Case studies are then given

which demonstrate the general testing strategy and the

supplemental guidelines. Each case study consists of a

iii



sample routine, sample test cases, and a step by step

description of how to apply the supplemental guidelines to

the sample routine. Finally, topics are given for future

research.

iv

• i t "~ lo ° "."i "J" °w " "I
I

" 
° ° ° o q".

° ° " °. °
°o.° 

o
°" . . ..-. .

" ° -
°

.- " - *. . " o. "
' " -. ° '



AC KNO WLED GE ME NT

I would like to thank Dr. James S. Collofello who

conceptualized this thesis and who provided valuable

direction and insight throughout its development. Thanks

also to Dr. Terry Mellon, Dr. Esen Ozkarahan, and Dr.

Ernest Hirata for their reading of this document.

Finally, I would like to thank my wife, Lisa Snaufer, who

provided moral support and patience.

V



TABLE OF CONTENTS

LIST OF FIGURES ..................................... viii

CHAPTER 1. INTRODUCTION ............................. 1

CHAPTER 2. GENERAL TESTING .......................... 5

2.1. Testing Introduction .......................... 5

2.2. Objectives ................................ 6

2.3. Errors .................................... 7

2. 4 . Testing Steps ............................. 8

2.5. Fundamental Problem of Software Testing

0.... . 0 ..... 0.0... .0..... ... ...0.0. .. .. 10

2.6. Testing Methods ........................... 11

2.7. Testing Tools ............................. 19

2.8. Automated Testing Systems ................. 20

CHAPTER 3. TESTING ANALYSIS ......................... 24

3.1. Subprogram Default Parameters ............. 27

3.2. The Basic Loop ............................ 31

3.3. Pragma SUPPRESS ........................... 32

3.4. Packages .................................. 33

3.5. Overloading Operators ..................... 35

3.6. Low-Level Statements ..................... 36

3.7. Unchecked Programming ..................... 37

3.8. Generic Program Units ..................... 38

3.9. Exception Handling ........................ 43

3.10. Tasks .................................... 47

vi



3.11. Summary...................................... 49

CHAPTER 4. TESTING GUIDELINES.......................... 50

4.1. General Testing Strategy..................... 50

4.2. Subprogram Default Parameters .......... 53

4.3. Generic Program Units........................ 58

4.14. Exception Handling........................... 66

4.5. Tasks......................................... 77

CHAPTER 5. CASE STUDIES................................. 89

5.1. Subprogram Default Parameters................ 90

5.2. Generic Program Units...................... 92

5.3. Exception Handling...........................94

5.14. Tasks ............................. 98

CHAPTER 6. CONCLUSION.................................. 101

B IBLIIOGRAPHY............................................ 103

APPENDIX A. Subprogram Default Parameter Case

Study............................................ 106

APPENDIX B. Generic Program Unit Case Study...........108

APPENDIX C. Exception Handling Case Study............ 111

APPENDIX D. Tasks Case Study.......................... 116

vii



LIST OF FIGURES

Figure 1. Classes for Equivalence Class Testing.

...,.. .... ..... . .. .... .. .... ........... . 14

Figure 2. If Statement with Multiple Condition.

................................................. 18

Figure 3. Subprogram with Default Parameter ....... 28

Figure 4. Divide by Zero Error . ................... 29

Figure 5. Multiple Subprogram Default Values. 30

Figure 6. Conditional Exit Statement in Basic

Loop . .. ......................................... 32

Figure 7. Package Specification . .................. 35

Figure 8. Generic Parameter Default Values ........ 42

Figure 9. Propagating Exceptions . ................. 46

Figure 10. Errors Caused by Default Values ........ 55

Figure 11. Generic Type Parameters . ............... 61

Figure 12. Unit Testing of Exception Handler ..... 69

Figure 13. Integration Test of Exception Handler.

-........... ................................... 73

Figure 14. Creating Multiple Tasks . ............... 82

Figure 15. Family of Entries . ..................... 84

Figure 16. Task Rendevous . ........................ 86

viii

," % '-,' Q'"% ° .° q' ."-'" '° '" '~ ° .% " ............................'.......................".....°'-," "" '-'", -' "



CHAPTER 1

INTRODUCTION

Testing plays an important and costly role in

software development. It is important because errors need

to be uncovered and there needs to be confidence in the

correctness of the software when testing is completed. It

is costly and can consume as much as 50% to 80% of the

development budget during the software development life

cycle [1]. This necessitates the need for thorough,

cost-efficient testing methodologies/techniques. Consid-

erable research and development is currently being done in

this area [2,3]. A relatively new programming language

needing testing research is Ada+.

Ada is a general purpose programming language

developed at the initiative of the United States Depart-

ment of Defense. Ada, which was designed using Pascal as

the base language [4], incorporates many features dif-

ferent from the Pascal language. It was designed for the

domain of large, real-time, embedded computer systems,

based on a set of specific language requirements. As a

result of the language requirements, Ada supports

jAda is a registered trademark of the United States
Government (Ada Joint Program Office).
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testing. The methodology is based on definition/usage

graphs, which focus on the occurrences of variables. The

authors justify the use of this strategy by stating that

one should not feel confident about a program without hav-

ing seen the effect of using the value produced by each

and every computation.

Ideally, the tester can guarantee absence of errors

by exhaustive functional testing, but this is virtually

impossible to do in large programs. For example, cause-

effect testing a large program would require a potentially

large, unmanageable number of test cases.

The inability to do exhaustive functional testing is

compensated by performing structural testing. Structural

testing is defined as constructing and applying tests that

cause the execution of certain components of a program

[12]. This is done by creating test cases that depend on

the internal structure of the program. The actual source

code is used to derive test cases. Beizer [1] calls this

path testing and contends that it is the cornerstone of

all testing. He further states that it is the minimum,

mandatory foundation of any effective test plan. A path

through a program is any executable sequence of statements

through that program that starts at a junction (point in

program where control flow merges) or decision and ends at

another, or possibly the same, junction or decision [17].
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DISCOUNT QUANTITY

0% 0 < Qty <= 10
5% 10 < Qty <= 50

10% 50 < Qty <= 5000

Figure 1. Classes for Equivalence Class Testing.

Cause-effect testing is similar to equivalence class

testing, but it goes two steps further. All possible com-

binations of equivalence classes are tested and the test

cases include the expected results. Because all combina-

tions of equivalence classes are tested, it may be neces-

sary to test an equivalence class more than once. Cause-

effect testing provides a representation of logical condi-

tions and corresponding actions [9]. It is also benefi-

cial in that it points out incompleteness and ambiguities

in the specifications [15]. The matrix used for

equivalence class testing is expanded for cause-effect

testing to allow for the expected results, and is now

called a decision table.

A method put forth by Rapps and Weyuker [16] is

called data flow analysis. The strategy is to track input

variables through a program, following them as they are

modified, until they are ultimately used to produce output

values. By doing this, associations between the defini-

tion of a variable and its uses are examined during
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is 99.99, then try to print 99.99 and 100.00. Again, all

of these boundary areas are highly suspect to error.

Equivalence class testing strives to define a test

case that uncovers classes of errors, thereby reducing the

total number of test cases needed [9]. Test cases are

derived by partitioning inputs into equivalence classes.

An equivalence class represents a set of valid or invalid

states for input conditions. Figure 1 gives an example of

equivalence class testing by showing discounts a customer

would receive when ordering goods. The tester would

select one value from each category. From Figure 1, the

values 5, 25, and 75 might constitute test cases for each

valid equivalence class. Invalid classes also need to be

tested. In this example, invalid orders occur when a cus-

tomer orders less than one good or more than 5000 goods.

In this case the values -1 and 6000 could be tested. Test

cases are derived so that each equivalence class is tested

only one time. To keep track of the testing effort, a

matrix should be used which is comprised of input informa-

tion only. The matrix lists the test case along with the

corresponding equivalence class(es) being tested.

.- . ;% 'o-,-. • .. . - . - . . • . .• . - . • '- '-' . - -" ..- ..- . ". .. - • -. -. '. . - . . . .. -. . • .. .L.
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Test cases are derived based upon the software's

specifications. These test cases can be prepared as

specifications are identified resulting in a comprehensive

test plan. Preparing test cases early is useful in

preventing errors from occurring in the first place. The

test plan may be used later to validate the system and is

especially useful for user acceptance testing. There are

several systematic methods for selecting test case data.

Domain (boundary) testing attempts to uncover errors

in a path domain by selecting test data on or near the

boundary of the path domain [13]. Many errors occur

around a boundary. A path corresponds to some possible

flow of control and its domain causes its execution. The

primary error that domain testing attempts to uncover is

the control flow error. A control flow error occurs when

a specific input follows the wrong path due to an error in

the control flow of the program [14]. The goal of domain

testing is to demonstrate that the boundary of a control

flow is correct within an acceptable error bound.

Along with domain testing are other forms of boundary

testing. Whereas domain testing tests flow of control

(paths) boundaries, one can also test the boundaries of

input and output ranges, indices, etc. For example, if

the range of some acceptable input is 1-100, then test

inputs 0, 1, 100, and 101. If a maximum printable value
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neither passing tests nor demonstrating compliance imply

correctness. If the entire set of test cases have been

run and no errors are found, it does not mean that there

are no more errors in the program. Perhaps the set of

test cases is incomplete.

2.6. Testing Methods

Testing methods are roughly broken down into two

categories: functional and structural. The reason for the

different categories is that software can be viewed from

different perspectives. No one strategy is best, as nei-

ther can guarantee finding all errors in a program. The

idea is to use different strategies which result in maxim-

izing the number of errors found.

In functional testing, functions are identified which

are supposed to be implemented, and the software is tested

against the specifications for those functions [12].

Functional testing is conducted to determine the extent to

which software conforms to its requirements [2]. This is

also called black-box testing. The manner in which

specifications are met is ignored. The tester is only

concerned with demonstrating that the input is properly

accepted, output is correctly produced, and the integrity

of data is maintained in accordance with specifications

[9].
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The builds and threads method involves testing the

system by functionality. The system is divided into

builds (functions), which are comprised of one or more

units. The entire build is tested at the same time. The

idea is to bring the system up one function at a time.

Validation provides final assurance that software

meets all functional and performance requirements [9].

This is performed by the software engineer utilizing a

test plan which outlines the testing procedure. If the

software passes this phase then it is ready for release.

System testing involves combining the software with

the actual environment it is designed to execute in. The

final step of this phase is acceptance testing which

involves the user. If the user accepts the software at

this point then there is a working system. Note that some

users will accept software as is from the vendor based on

prior success or the vendor's validation test.

2.5. Fundamental Problem of Software Testing

According to Goodenough and Gerhart [10] the funda-

mental problem of testing is "the inference from the suc-

cess of one set of test data that others will also

succeed, and that the success of one test data set is

equivalent to successfully completing an exhaustive test

of a program's input domain." Foster [11] notes that
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The second step is integration testing which involves

putting together all related units to find errors associ-

ated with interfacing. The objective is to take unit-

tested units and build a software structure dictated by

design [91.

There are several methods for performing integration

testing. Top-down testing starts with the topmost unit

which is tested as a unit with all units it calls simu-

lated by stubs. Stubs are simple programs designed to

provide the proper response of the real unit. The proper

response allows for the testing of flow of control and

argument passage before further integration. Once the

topmost unit is tested the stubs are replaced with the

real units and they are tested with their respective stubs

one at a time. This continues downward through the struc-

ture one at a time until the entire system is integrated.

Bottom-up testing is the opposite of top-down. The

units at the lowest level of the software structure are

tested first. The units that invoke the unit being tested

are called drivers, which act in the same manner as stubs,

providing proper responses. Testing moves up the struc-

ture replacing drivers with actual units until the entire

system is integrated.

, n m m Imfmi~n~~kdln~m~~a Uu~id.......l............ . ....... ...



be very costly to fix.

2.4. Testing Steps

The first formal step is unit testing. Beizer [1]

defines a unit as a system software component having the

following characteristics:

(1) It is, or is intended to be, the work of one program-

mer.

(2) It has a documented specification that includes as a

minimum: input definition, processing definition,

data base definition, and interface definition.

(3) It is a visible, identifiable product that will be

explicitly integrated into the program of which it is

a part.

(4) It can be compiled or assembled and tested separately

from other units, except such subunits as it might

call.

(5) It is necessary.

The goal of unit testing is to assure that the unit

performs its function according to specifications. Tests

are used to uncover errors within the boundary of the

unit. The units are tested separately before they are

integrated.
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in his eyes, successful (pride) because the software

works. A test resulting in error(s) implies the engineer

erred. Is this psychologically destructive? The answer

lies in the objectives of software testing.

The main objective of software testing is to execute

a program with the intent of uncovering an error. A suc-

cessful test uncovers an error.

A second objective is to provide confidence in the

correctness of the software when testing is completed.

Show the software functions according to its specifica-

tions. Once testing is finished there should be reason-

able confidence there are as few errors as possible.

2.3. Errors

Errors occur when the software does not perform

correctly with the given input. Uncovering them is our

goal. The cost of locating and fixing one can be negligi-

ble or substantial. The cost is usually in proportion to

when in the software life cycle the error is discovered.

One study [9] indicates that the cost of an error rises

dramatically the later it is found.

The severity of an error should not be measured in

terms of the cost to correct it. A catastrophic error may

be easy to fix, while an unimportant functional error may

....,......" ."" ." -'. "" '"." -"-.-" .. - ., .• ".'''..,'''. .''''. ''" , ' ", , .,"' '." .. ".-.. "'". .' * . '



errors (debug) and tests until there is reasonable confi-

dence by some pre-established criteria that the program

works.

2.2. Objectives

In school the student programmer writes software to

meet the expectations of the professor. When the student

tests the program he attempts to demonstrate that the

software will perform its function as required. A suc-

cessful test finds no errors which results in a working

program and a good grade. A test that finds an error is

not a successful test in the eyes of the student because

he then has to spend time debugging and retesting.

The student's (and probably numerous non-student's)

definition of a successful test is a contradiction of

software engineering's definition. The software engineer

defines a successful test as one that finds an error.

Does this create a conflict with the software engineer?

The engineer who develops software thinks that he has

developed a great piece of software. His pride, self-

esteem, and months of work are wrapped up in the software.

He is ready to test to prove his work and "pass." But, he

is supposed to test his program with the intent of uncov-

ering errors, revealing faults in work. Is this a con-

flict of interest? The test that uncovers no errors is,

S.

. . o Q q ~ ~ b . . . . . . . . . . o - . .. . . .. . . . . .•



CHAPTER 2

GENERAL TESTING

2.1. Testing Introduction

This thesis focuses on software testing as a planned

activity in the software engineering life cycle. It is

hoped that the reader understands that proper software

engineering involves testing in some form at every oppor-

tunity, whether the testing is formal or informal. A pro-

grammer who writes Some code may test that code by manu-

ally executing the code at his desk. He can test the code

by explaining it to others (walkthrough) or by letting

others review the code in private (inspection). He can

test the code by executing it on a computer with test or

live data. Testing occurs when he integrates his code

with other's code. The point is that testing should be a

continuous process from the very beginning of software

development. For our purposes, testing refers to a for-

mal, systematic procedure.

This procedure consists of generating test cases from

the program's input domain and/or invalid values, deter-

mining the expected results for each test case, executing

the program on these test cases, and comparing the actual

results with the expected results. Then the tester fixes

...... .. . . .. . . . .. -. -.. .. -.' ' a' ..- '..'. - -. ' .. .,- - w ." % " % 
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Pascal-like language structural testing approaches are

adequate or whether a new approach(es) is needed for its

structural testing. If a new approach is needed, guide-

lines for its structural testing are given in Chapter 4.

The analysis includes a description of errors/problems

that might occur when using the feature.

Guidelines are then given in Chapter 4 for the test-

ing of Ada programs. These guidelines are presented

through a general testing strategy and include additional

structural testing guidelines for certain features. The

fact that these features need additional structural test-

ing guidelines was established in Chapter 3.

In Chapter 5, case studies are presented to demon-

strate the guidelines given in Chapter 4.

Finally, Chapter 6 concludes the thesis and discusses

topics for future research.

-

4°\
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technology" has on the testing of Ada programs. This will

give the "practical programmer" and tester guidance on

testing his/her code and will stimulate, hopefully, the

research and development of Ada testing tools and tech-

niques. Belden [71 characterizes testing as "the most

difficult, boring, and costly part of software develop-

ment." Therefore, any contribution to improve testing

will result in lower software costs and higher software

quality.

The author assumes that the reader of this thesis has

a basic knowledge of the Ada language. See the Ada Refer-

ence Manual [8] for specific Ada language information.

Another assumption is made that the reader may not have an

in-depth knowledge of testing approaches for Pascal-like

languages or of testing in general.

A general background of testing is presented in

Chapter 2 covering testing steps and current testing

methods/approaches for Pascal-like languages.

Chapter 3 consists of a testing analysis of certain

features of Ada. The features analyzed are selected

because they potentially might require different

approaches than the Pascal-like language testing

approaches described in chapter two. Each feature is

briefly described and then analyzed to determine whether

. . .
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exception handling, processing algorithms with different

data types (generic program units), and concurrent real-

time processing. Pascal does not support these and other

features incorporated in Ada. This thesis will investi-

gate these features from the point of view of testing.

The current literature reflects little research being

done on these features or in any area of testing Ada pro-

grams. Taylor and Standish [5] are currently doing useful

research on the testing of Ada tasks and in the develop-

ment of the Ada programming support environment, but there

are many other areas that need to be investigated. As a

result, the Ada tester has no practical guidelines on the

testing of Ada's features. Does the state-of-the-art of

testing for Pascal-like languages apply to these features

or are different testing approaches needed? Maybe some

current approaches apply and maybe new approaches need to

be developed. How do testing personnel test Ada programs

now? Guidelines will be given. Issues and questions will

be raised for future research.

According to Pyle [6], the Ada programming language

represents "a major advance in programming technology,

bringing together the best ideas on the subject in a

coherent way designed to meet the real needs of practical

programmers." The purpose of this thesis is to focus on

the impac-, if any, this "major advance in programming

. . . . . . . . . . . .-p--
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Another way to view this is that the manner in which the

specifications are implemented is being tested. This

method is also called white-box testing.

The ideal goal of structural testing is to execute

all logical paths in the program to demonstrate that the

actual structure matches the intended structure. Unfor-

tunately, this ideal cannot be obtained because it

involves exhaustive testing. Every decision can double

the number of paths and loop structures can lead to a

potentially infinite number of paths. A more practical

goal is to select a small but sufficient set of test paths

to meet some criteria. Defining that criteria leads to

several different metrics.

The simplest metric, called statement testing, is to

execute all program statements. This is the most often

used strategy because it is easily implemented, but is a

weak measure of testing thoroughness when compared to

other strategies [2]. Its main disadvantage is the possi-

bility of executing all program statements without execut-

ing all the possible paths through the program.

DD-path testing, a stronger metric, executes every

branch of decisions in a program. For example, this means

to execute each direction of case statements and the THEN

and ELSE of IF-THEN-ELSE statements. This is stronger

.. ,r._ ,, -h ~z,_<; ,, .....................p', ". . ." :'' ... . "
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than executing all statements, because all statements can

be executed without executing all branches of decision

statements. If all branches in a program are executed,

then usually all statements will be executed. Thus,

statement testing is a subset of DD-path testing.

The statements of a branch are often called DD-paths

or decision-to-decision paths. Gannon [18] defines DD-

paths as "the sequence of statements from the first state-

ment of a decision branch to the next decision statement."

An even stronger metric is multiple condition test-

ing. This is stronger because it not only means to exe-

cute the THEN and ELSE of IF-THEN-ELSE statements, but to

test multiple conditions, when applicable. An example of

a multiple condition is shown in Figure 2. The THEN will

be executed if x < y and the ELSE will be executed if y >=

x and s <= r. This satisfies the DD-path metric, but r <

s also needs to be tested. For this multiple condition

four different test cases are required. For DD-path test-

ing only two test cases are required. Errors due to

specifications and the setting up of the multiple condi-

tion are more likely to be uncovered using the extra two

test cases. For that reason multiple condition testing is

a stronger metric.

. . . . . . . . . . .
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If (x < y) or (r > s)

Then

Else

end if;

Figure 2. If Statement with Multiple Condition.

Beizer [] proposes a fundamental path selection cri-

teria that, as a minimum, requires enough paths to assure

that every statement is executed at least once, and every

decision is taken in each possible direction at least

once. Note that this does not employ multiple condition

testing.

Whichever strategy/criteria is used, the tester must

specify the input values that cause the program to follow

the desired path. Beizer [17] calls the act of finding

those input values sensitizing. This is as important as

selecting the path to test. This is not as easy as it

might appear, because some paths may not be easily achiev-

able. Paths not being easily achievable could be due to

loops, decision variables dependent on processing, etc.

The tester should select paths for testing that meet the

criteria in the least complicated manner. If a path does

seem to be or is unachievable, this could be an indication

of an error or unnecessary code.
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2.7. Testing Tools

Testing tools are used to aid in testing. One of the

objectives of testing is to provide confidence in the

correctness of the software when testing is completed: not

a guaranteed confidence, but a reasonable confidence.

Reaching that confidence point is determined by executing

a set of test cases that satisfy some criteria. Tools are

used to demonstrate that the software has been tested to

meet that criteria.

The primary benefits that these tools are intended to

provide are: precise measurement of test thoroughness;

identification of program statements, DD-paths, etc.,

which are/are not executed during testing; description of

the execution patterns associated with test scenarios; and

detection of errors [19].

Tools can be broken down into the following

categories: static analysis, dynamic analysis, and formal

functional analysis. Static analysis refers to all pro-

cessing done on source code which results in useful test

and debugging information [1]. Useful deougging informa-

tion is derived from the source language processor and

translator. An example of useful test infori-tion which

can be derived from static analysis is the identification

of a program calling hierarchy. Some sort of cross refer-

°o
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ence list also results from static analysis. Static

analysis does not require program execution because it

operates only on the source code.

Dynamic analysis refers to processing done under exe-

cution. This is when the program is executed using a

given test case to match intent with actuality. Informa-

tion gathered from static analysis is used to aid in

dynamic analysis.

Formal functional analysis refers to the symbolic

execution of a path. This provides for the investigation

of the complete functional correctness of particular paths

by providing a symbolic representation of that path. One

can check for the correctness of the path for all test

data that will cause the path to be executed [13,20].

Each technique has its own strengths and weaknesses

and are especially valuable when integrated to work

together.

2.8. Automated Testing Systems

"The testing of software can be a very labor inten-

sive, expensive, and error-prone activity. To improve the

quality and cost-effectiveness of this activity, automated

testing systems (ATS) have been developed. ATS encourage

the use of systematic, formalized approaches to testing

.................... ........"s !......................'- ' ",-., ,:,, , .",r ",:, " ,'
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which ultimately improve the reliability of the software

products. Automating the testing process results in lower

software development costs, due to a reduction in human

errors and a higher detection rate early in the develop-

ment cycle, when the costs of correction are lower." [2]

The difference between ATS and the testing tools

described in section 2.7 is that an ATS is a software pro-

gram. An ATS is an automated testing tool.

ATS typically perform both a static analysis of the

high level program and a dynamic analysis of the program's

runtime behavior [2]. Static analysis functions in the

same manner as already described except finding errors is

left to the source language processor and translator. ATS

generally require a syntactically error free program

before static analysis takes place. Dynamic analysis

involves the insertion of probes (data collection state-

ments) into the program, which record execution charac-

teristics at runtime [21].

The insertion of probes into a program to monitor

runtime behavior is called instrumentation. Instrumenta-

tion is a widely used technique for monitoring execution

coverage as it provides a trace of execution activities.

For example, if one wants to insure that all DD-paths are

executed during the testing of a program, he might insert

" " ° " " ° • ° " -o " "" ," -' o " °" '- " " " ° - - ' ." " ." " . " - ' * "- * .* ." " b "° 
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a probe at the beginning of each DD-path to signify entry

into the path (executing the first statement of a DD-path

implies execution of the entire DD-path). The probes act

as procedure calls which are actually embedded into the

source code. The instrumented source code is then com-

piled and executed using given test cases. Each time a

probe is reached during execution a special procedure is

invoked which produces a record which later updates a data

base. The data base reflects DD-path coverage. Then a

report can be issued which provides DD-path coverage

statistics which can show DD-paths that have/have not been

executed.

This is just one example. Probes produce execution

records which provide unambiguous information about the

program's behavior. These records can then be processed

to produce dynamic reports which reflect coverage informa-

tion.

One can clearly see that the implementation of ATS

incorporates the integration of static and dynamic

analysis. In order to insert probes needed for dynamic

analysis one must know where to insert them. This

involves parsing the source code (static analysis) to

determine where to put them. Then, to produce the execu-

tion records, the program must be executed (dynamic

analysis) with test data.
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An ATS also allows for a selective history of a

program's dynamic behavior. A selective history is easier

to manage, display, and hence less expensive [2]. This is

done by allowing the tester to interactively specify

instrumentation sites. In other words, the tester may

specify what is/is not to be instrumented.



CHAPTER 3

TESTING ANALYSIS

This chapter deals with the testing implications that

certain features of Ada present to the tester. This is

done by analyzing certain features of Ada that potentially

might require different testing approaches than those

described in Chapter 2. This analysis involves several

steps.

Step one was an analysis of the entire Ada language.

The objective was to identify features of Ada that are

different from Pascal-like languages by looking at Ada

syntax charts and by researching second sources

[4,22,23,24]. At this point in the selection process the

testing implications of the identified features was not an

issue.

Ada's Pascal-like features are not incorporated into

this thesis. The reason that they are not included is

that the current testing approaches for Pascal-like

languages already apply in the testing of the Pascal-like

features. The tester can find further information on

these approaches by referring to sources found in Chapter

2 and by referring to other sources in the literature.

:. -..,.,. ..v ,.:.., .. :.-...-.-:,..¢, :: ,"v ,"." ":"":' " 
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Step two narrowed down Ada features identified in

step one by looking at each feature from a very high-level

point of view of testing. This did not involve a thorough

testing analysis of each feature. The criteria for

selecting features for further investigation was whether

there is a potential that Pascal-like language testing

approaches are not adequate when testing a particular

feature. If there was any doubt, the feature was selected

for further study. The features not selected at this

point for further study were deemed to be receptive to

Pascal-like language testing approaches.

Some of the features selected at this point, like

tasks and generic program units, obviously have testing

implications. Pascal-like language testing approaches do

not address concurrency and generic routine testing.

Other features, like basic loops and overloaded operators

do not at first glance seem to have any testing implica-

tions that Pascal-like language testing approaches cannot

handle. Yet they were selected because they are features

not incorporated in Pascal and there is a potential that

current Pascal-like language testing approaches are not

adequate when testing these features.

Ten features were then selected as a result of the

previous two steps. The features, one at a time, are

introduced and analyzed. The introduction consists of a
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brief description of the feature, possibly with an example

of its use.

The analysis of a feature consists of a determination

of whether the Pascal-like language testing approaches are

adequate when testing the feature, or whether a new

approach(es) is needed.

The analysis is from a structural testing point of

view and not from a functional testing point of view. The

functional testing perspective is not considered because

there is no difference in functional testing, as described

in Chapter 2, for any of the features. This is because

the manner in which specifications are met is ignored in

functional testing. The internal structure of the Ada

program is of no concern to the tester. For example, the

tester does not care if the calling of ,libprograms

involves default parameters. The tester's concern is

whether or not the actual output for a test case matches

the expected output.

By analyzing each feature from a structural testing

perspective, the feature is studied by looking at its

actual implementation and by seeing if there are testing

implications not covered in Chapter 2.

Also addressed are types of errors/problems that

might occur when using a particular feature. "What can go
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wrong?" is investigated.

Those features that require a different structural

testing approach or that have structural testing implica-

tions that the Ada tester needs to be aware of are further

discussed in Chapter 4 with guidance provided for testing

them.

3.1. Subprogram Default Parameters

A subprogram, which can be either a procedure or a

function, consists of a specification and a body. The

specification defines the subprogram's interface (calling

convention) with other program units while the body con-

tains the subprogram's implementation details. The

specification defines the name of the subprogram and the

parameters, if there are any.

Ada allows for a parameter defined in a subprogram

specification to have a default value. This means that if

a subprogram is invoked and the parameter is not given a

value in the invocation, then the parameter assumes the

default value given in the specification. An example of a

subprogram specification with a default parameter is shown

in Figure 3. The parameter ORDER has a default value of

ASCENDING. The subprogram SORT can be called using the

default parameter. For example, SORT can be called as:

SORT(MIDTERMGRADES);
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SORT(SOCSECNUMBER);

In both invocations, the default value of ASCENDING will

be applied to ORDER. SORT DATA is assigned the respective

passed value: either MIDTERMGRADES or SOCSECNUMBER.

procedure SORT(SORT DATA :in out NUMBERS;
ORDER :in DIRECTION := ASCENDING);

If ORDER = ASCENDING

Then

Else

end if;

Figure 3. Subprogram with Default Parameter.

Several problems/errors can occur when using subpro-

gram default parameters. One is the potential for not

executing sections of code. If every invocation of a par-

ticular subprogram in an Ada program is made using the

default parameter (or not using the default parameter),

then there is the possibility of not executing a section

of code. For example, see Figure 3. If the subprogram

body containing the IF statement is always invoked using

the ORDER default value of ASCENDING, then the ELSE sec-

tion of the code will never be executed. The opposite

also applies. If the default parameter is never used,

*~~~~~ . .-- - - - - - - - - - - - - - -~ .; .2 -.. .. .* . .



29

then the THEN section of code will never be executed.

Thus, no structural testing metric can be met. However,

the statement coverage metric will uncover this problem.

An error can occur that no structural testing metric

will uncover. This occurs when the subprogram default

value introduces an error such as divide by zero. For

example, see Figure 4. If the default value 5 of DIVISOR

is used, a divide by zero error will occur. If the

default value is never used in the execution of the CALC

procedure, the divide by zero error caused by the default

value will never be uncovered. This error will not be

caught by any structural testing metric because the path

is executed. This meets the statement coverage/DD-path

testing metric. It will be uncovered only if the default

value is used.

procedure CALC(VAL1 :in out NUM;
VAL2 :in out NUM;
DIVISOR :in NUM 5);

For INDEX in I..DIVISOR

loop

VALI := VAL2 / (5 - INDEX);

end loop;

Figure 4. Divide by Zero Error.
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3.9. Exception Handling

In many applications, such as weapon systems or tran-

sportation systems, it is critical that the system be able

to recover from erroneous conditions. Ada provides this

capability through its exception handling facility. An

exception is defined as "a condition necessitating suspen-

sion of normal program execution" [23]. An exception

handler is a section of code to be executed when an excep-

tion occurs.

There are two types of exceptions in Ada: predefined

and user-defined. Predefined exceptions are declared in

the package STANDARD. They are raised (bring attention to

the condition) implicitly by the run-time system, although

they can be raised explicitly via the RAISE statement. It

is difficult to predict where and when they will be raised

because they are implicitly raised.

User-defined exceptions are created by the program-

mer. They must be raised explicitly by a raise statement.

It can be determined when and where they will be raised

because they are explicitly raised.

When an exception is raised, whether implicitly or

explicitly, it is handled by an appropriate exception

handler. If an exception handler is not present in the

body of the current subprogram, package, or task, then
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see Figure 8. ROWS and COLUMNS are given the default

values of 66 and 132. The problems/errors that can occur

when using generic parameter default values are the same

problems/errors described for subprogram default parame-

ters in section 3.1. The tester needs to look at the Ada

program to see if they are being used.

generic
ROWS : in INTEGER 66;
COLUMNS : in INTEGER 132;

package OUT DATA is

Figure 8. Generic Parameter Default Values.

Ada also permits the passing of subprograms as param-

eters to generic program units. The programmer can

declare a default subprogram for a generic subprogram

parameter. Again, see section 3.1 for potential

problems/errors when using default parameters and, as for

generic parameter default values, the tester needs to know

if default subprograms are being used.

Guidelines for the structural testing of generic pro-

gram units are given in Chapter 4.
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The programmer decides to use the generic sort routine to

meet the requirement. He instantiates the generic sort

with an array size of one thousand. The tester then rea-

sons that testing of the call number instantiation is not

necessary because the sort generic routine has already

been tested.

The program goes into production. One day only one

new library book is received and the sort routine fails,

bringing the system crashing down. The generic routine

was never tested for a single element sort. That test was

not possible for the sort by day of the week instantiation

because there was always seven days sorted. The test

would have been possible for the call number instantia-

tion. The routine was tested for the maximum array size

but not for the minimum array size.

Generic routines involving mathematical calculations

are very suspectable to error if each instantiation of the

generic routine is not tested. Exponentiation and divi-

sion (i.e. divide by zero) statements can easily result in

numeric errors.

The generic program unit can create other problems.

Ada permits the definition of default values as generic

formal parameters. The definition of such a parameter

takes the form of a variable declaration. For example,
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ple for routines of larger size.

A second problem is that no structural testing metric

can be met if only one of several instantiations of the

same generic program unit is tested. Entire sections of

code are not tested.

A significant problem is that there is no absolute

guarantee that the generic routine will function without

error for each instantiation. This is despite the fact

that the programmer can define generic parameter types,

thereby limiting the use of a generic routine to predeter-

mined types. For example, a generic sort routine has been

written with the primary objective of sorting by day of

the week. The sort key has been designated "type ELEMENT

is private", which means that the routine will sort any

set of data that permits assignment and test for

(in)equality. The generic array that holds the data to be

sorted is an unconstrained array. This means that its

size can vary with each instantiation.

An instance of the generic routine is created to sort

by day of the week with an array size of seven. Assume

there is always seven days of data to sort. The instan-

tiation is tested and deemed ready for use.

Management then decides that it wants to be able to

sort new library books received each day by call number.

.. . .< , .. . . .
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This definition of a generic program unit is just a

template. It does not create any code. Therefore, it is

not executable and cannot be used directly. An instance

of the generic program unit must be created in order to

use it.

The act of creating an instance of a generic program

unit is called instantiation. When an instantiation

occurs, the generic template is "filled in" with informa-

tion from the template and the program continues as if a

regular subprogram or package has been defined.

Generic program units provide several error/problem

areas for the Ada tester. One is the question of whether

or not each instantiation needs to be tested. The argu-

ment can be raised that if the generic program unit is

truly generic, then testing is needed for only one instan-

tiation. The testing of other instantiations of the same

generic program unit is not needed because the generic

algorithm is logically the same for all instantiations.

If it works for one instantiation, it will work for all

instantiations!

There are several problems with this reasoning. One

problem is establishing that a generic routine is truly

generic. This may be simple for an exchange routine which

consists of onl) three statements, but it is not that sim-
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The use of unchecked programming has no structural

testing implications. They are not testable. To use

either generic subprogram the programmer simply states

that one/both are in effect via the WITH statement. No

testable code is generated. The tester should be sure to

test code that unchecked programming applies to with the

strongest feasible testing criteria.

Unchecked programming is not addressed in Chapter 4.

3.8. Generic Program Units

Generic program units are algorithms that can be used

with different data types. They allow the Ada programmer

the ability to factor out common algorithms used on dif-

ferent data types. This helps manage the complexity of

programs. For example, a programmer may want to exchange

two elements of the following types: integer, enumerated,

and real. In Pascal-like languages three subroutines are

required, one for each type. In Ada one generic subpro-

gram is required.

To create a generic program unit a prefix, called the

generic part, is added to a subprogram or package specifi-

cation. This defines the specification as being generic

and defines all generic parameters, if any. Then the gen-

eric body is added.

. . . . . . .
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Low-level statements provide no additional structural

testing implications. This feature is not included in

Chapter 4.

3.7. Unchecked Programming

Unchecked programming allows the relaxation of Ada's

typing and elaboration rules. It is done through the exe-

cution of two predefined generic subprograms:

UNCHECKEDDEALLOCATION and UNCHECKEDCONVERSION.

The UNCHECKEDDEALLOCATION generic subprogram is used

to explicitly deallocate the space for a dynamic element.

There is no automatic garbage collection by the system.

The danger in doing this is in the deallocation of an ele-

ment that has other elements pointing to it. Ada makes no

guarantees concerning the value of the pointer of the

element(s) pointing to the deallocated element. The ele-

ment now points to a nonexistent (deallocated) element.

The UNCHECKEDCONVERSION generic subprogram permits

unrestricted conversion from one type to another. This is

necessary if there needs to be an operation between two

incompatible types. The danger in doing this is that

there is no guarantee concerning the result. The program-

mer must ensure that the properties of the target type are

maintained and that the results are correct.
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operator for a type for which the operator is not prede-

fined, he/she must write an appropriate overloaded subpro-

gram using the expressive operator as the name of the sub-

program. For example, if a programmer wants to use the

operator "+" to perform a set operation, he/she can rede-

fine it as the name of a function which performs the

desired set operation. This is called overloading an

operator. The compiler determines the proper subprogram

invocation by examining the invocation parameters.

The only problem that overloading operators presents

to the tester is possible confusion during debugging and

that has nothing to do with the actual testing of the pro-

gram. They have no effect on the structural testing of

Ada programs and are not a part of Chapter 4.

3.6. Low-Level Statements

Ada allows for the writing of low-level (assembly)

code. This allows the Ada programmer to avoid going out-

side of Ada when low-level programming is necessary.

The low-level statements are placed in a subprogram

that contains only low-level statements or declarations.

A package must be defined that exports a record abstract-

ing the low-level instruction set.
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world. The only operations that may be performed on

STACKRECORD are PUSH and POP. The user may not CLEAR the

stack or manipulate it through STACKRECORD in any way.

The point is that the implementation details of procedures

PUSH and POP would not be any different if they were not

in the package. The code is logically the same. Thus,

the structural testing of PUSH and POP, which would be

contained in the body of the STACK package, does not

require a different structural testing approach.

package STACK is
type STACK RECORD is private;
procedure TUSH( parameter list );
procedure POP ( parameter list );

private

type STACK RECORD is
record

end record;
end stack;

Figure 7. Package Specification.

Packages need no special structural testing guide-

lines and are not discussed in Chapter 4.

3.5. Overloading Operators

Expressive operators are predefined in Ada for only

certain types. This is because Ada is a strongly typed

language. If the programmer wants to use an expressive

.............................7
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ponents." Booch [4] defines a package as "a collection of

computational resources, which may encapsulate data types,

data objects, subprograms, tasks, or even other packages."

A package encapsulates or puts a wall around these

resources.

The main objective of a package is to support the

software engineering principles of information hiding and

data abstraction. Packages do this by giving the program-

mer a way to physically group related entities into a log-

ical chunk. This is done through a package's specifica-

tion and body. The specification lists the visible (to

other program units) parts of the package. The implemen-

tation details of the package are in the body. These

details are not visible outside of the package. It is not

important for the user to know how the operations are

actually implemented.

Does this "most important improvement over Pascal"

have structural testing implications? The answer is no

because a package is simply a collection of resources.

Its purpose is not to change how resources are imple-

mented, but to hide how they are actually implemented.

For example, in Figure 7 a package called STACK is defined

having two possible operations: the procedures PUSH and

POP. The STACKRECORD of the stack is a private type

meaning that its structure is not visible to the outside
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The pragma SUPPRESS is used in Ada to suppress vari-

ous run-time checks which detect exceptional conditions.

The act of detecting exceptional conditions has a slight

runtime overhead, so if there is some reason to do so

(efficiency), these checks may be suppressed. One appli-

cation in which the use of this pragma is tempting is the

real-time application. However, one of the main reasons

that the exception handling feature is a part of Ada is so

real-time systems do not fail during execution. They can

recover through an exception handler. If the pragma

SUPPRESS is in effect, recovery via an exception handler

is not possible.

This feature has no testing implications as far as

the actual testing of the program is concerned. However,

some points need to be made. Make sure that the section

of code that the pragma SUPPRESS applies to has been

thoroughly tested, especially if it is critical that the

program does not fail. Do not use this feature unless

there is a justifiable reason to do so.

3.4. Packages

A package is one of Ada's fundamental program units.

According to Feuer and Gehani [22] "packages are probably

the most important improvement of Ada over Pascal because

they allow for the effective exploitation of program com-

.!
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to the end of the loop is never executed. No structural

criteria can be met.

loop

exit when WEIGHT > MAX or READY TO LOAD;

end loop;

Figure 6. Conditional Exit Statement in Basic Loop.

There is a potential for boundary errors or errors

due to the use of multiple conditions. Both of these

problems are centered at the conditional EXIT statement.

The above problems/errors do not require different

structural testing approaches. The structural testing

metric of statement coverage will uncover the non-

execution of code. Multiple condition testing will

uncover multiple condition/boundary errors.

The basic loop has no effect on the structural test-

ing of Ada programs and is not included in Chapter 4.

3.3. Pragma SUPPRESS

A pragma is an instruction to the compiler. One

pragma in particular, the pragma SUPPRESS, is investigated

here.
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3.2. The Basic Loop

Ada has three control structures that allow for a

section of code to be executed zero or more times. One of

the structures is called the basic loop (the for loop and

while loop are the others). It is structured to loop for-

ever. To leave the loop, the EXIT statement must be used.

The EXIT statement can be conditional or unconditional.

The basic loop has two common uses in Ada. It is

used as the outer loop of a task that must continue for-

ever once it is initiated. It is also used in conjunction

with an exception handler when interactive data is being

input. The section of code contained in the basic loop

repeats until proper data is input.

There are problems/errors that can occur as a result

of using basic loops. The non-execution of a section of

code within the basic loop is one problem. This can occur

when an EXIT statement is not the last line of the basic

loop. If the EXIT statement is unconditional then the

rest of the code in the basic loop is definitely not exe-

cutable. If the EXIT statement is conditional (uses WHEN

clause) then there is the possibility of code not being

executed. For example, see Figure 6. If the WEIGHT is

greater than MAX or READYTOLOAD is true every time the

loop is entered, then the code from the conditional EXIT

. . . . ..... . . . . . . . . . . . .
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Another problem area is the use of multiple subpro-

gram default parameters. This could easily lead to multi-

ple condition statements where the potential for error is

great. For example, see Figure 5. DV1 and DV2 can have

default values when the subprogram containing the IF

statement is called. The multiple condition structural

testing metric can be used to test this section of code by

using four different test cases to cause each of the four

possible conditions of the IF statement to occur. The

problem is that a test case does not have to include the

default values of both DV1 and DV2. If both default

values are used at the same time in this example the exe-

cution of the exponentiation statement could result in a

NUMERIC ERROR.

If (DV1 > X) and (DV2 > Y)

Then

X DV1 ** DV2;

Else

Figure 5. Multiple Subprogram Default Values.

It can be seen that the use of subroutine default

parameters do have structural testing implications. Thus,

guidelines for testing them are given in Chapter 4

X**..:...,.:C ....................
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control passes up (propagates) to the next level until

either an exception handler is found or the operating sys-

tem is reached. The exception handler acts according to

the desires of the programmer. There are no predefined

exception handlers. It is the responsibility of the pro-

grammer to respond to an exception with an appropriate

algorithm.

Several errors/problem can occur when using the

exception handling facility. One problem involves the use

of predefined exceptions. The potential of their

occurrence adds considerable complexity to structural

testing if the desired metric is DD-path testing. The

problem is that they create additional implicit DD-paths.

To find all such paths requires that for each statement in

the program, one determines all exceptions, if any, that

might be raised by the execution of that statement. It is

not feasible for the tester to do that.

Another problem areas is the propagation of excep-

tions. Tripathi et al [24] notes that "a relatively high

level routine may potentially be the recipient of a multi-

tude of exceptions propagating from lower level environ-

ments." This creates the same problem stated in preceeding

paragraph: that of additional DD-paths.

* . ..- ................................ '.... .......
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It also complicates the integration testing of high

level routines. Should stubs include possible exceptions

propagating from below?

Another problem caused by propagating exceptions is

that the principles of data abstraction and information

hiding may be violated. This is inconsistent with the

static scoping of the rest of the language. Many pro-

pagated exceptions, specific to lower level routines, have

little relevance at the higher level. Privacy is comprom-

ised. For example, propagating from a package might give

details of the package's implementation which otherwise

are hidden.

A big problem/question concerns exceptions and param-

eter passing. For a subprogram with out or in-out parame-

ters, the effect of propagating exceptions on its environ-

ment may be undefined [24]. For example, see Figure 9.

The statement 1Y := Y * Y" will in all probability raise

NUMERICERROR which will be propagated upward because

there is no NUMERICERROR exception handler in CALCULATE.

The value of the actual parameter corresponding to X may

be unchanged or may have increased by some amount, depend-

ing on the particular parameter passing mechanism. How

does the programmer write the proper exception handler or

the tester know if proper recovery has taken place if the

values of parameters are unknown?

........-
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procedure CALCULATE(X : in out INTEGER;
Y : in INTEGER) is

COUNT : INTEGER;
begin

for COUNT in 1._500
loop

X := X + 1;
Y Y * Y;

end loop;
end CALCULATE;

Figure 9. Propagating Exceptions.

By this time, one may wonder whether exception

handlers should even be tested. The answer is yes because

Ada programs do not have to include them. If they are

present in a program, they are there for a reason. The

programmer wants a certain response (exception handler) to

a certain situation. The tester must test the exception

handler to make sure the response is correct: that the

program recovers correctly. Remember that predefined

exceptions do not give predefined answers. If it is not

critical to recover, then maybe exception handlers should

not be in the program in the first place.

Exception handling confronts the Ada tester with many

testing problems. Pascal-like language approaches do not

consider these problems. For that reason, guidelines are

given in Chapter 4 for the structural testing of exception

handlers.
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3.10. Tasks

The task is the Ada feature that supports concurrent

real-time processing. It allows for a number of different

activities to progress in parallel. A task consists of

two parts, a task specification and the task body. The

specification defines the interface between the task and

other units. The body defines the action of the task.

Tasks are based on the concept of communicating

sequential processes. They can be viewed as independent,

concurrent activities that communicate with each other via

messages. Two tasks rendevous when one passes a message

to the other. The task receiving the message accepts the

message from the calling task. The calling task is said

to enter the receiving task. The statements that allow

for this communication are the ENTRY and ACCEPT state-

ments.

If one task gets to the entry point before the other,

the first task will put itself to sleep (suspend itself)

until the other task arrives at the rendevous point. If

the programmer wants the waiting task to do something

else, several options are available.

Tasks present many problems/error possibilities that

need to be tested for. One error is the synchronization

error. The synchronization error results from sequencing

-- - - - o, . . . . . . . .l . . . . . • . . . . . . . . .
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problems. Examples of such failures given by Leveson and

Stolzy [25] include 1) incorrect sequences such as not

having statement X occur before statement Y or not having

rendevous A occur before rendevous B, and 2) not reaching

a specific statement such as not reaching a task termina-

tion statement.

Another unwanted situation that can arise from

sequencing problems is deadlock. A deadlock occurs when

resources are tied up by activities to the point where

further processing is blocked. For example, process A

wants resources that process B has and process B has

resources that process A has in its possession. Both

processes are waiting for resources that can never become

free. Neither can proceed resulting in deadlock. There-

fore, the program cannot proceed. This situation must be

uncovered during testing.

Another problem for the tester is executing all pos-

sible synchronizations that may occur during execution.

In other words, coming up with all possible sequences of

concurrency related events. Is this feasible? In tasks

involving dynamic entities (pointers, subscripts) the

number of synchronization scenarios can get to be

extremely large. Some intra-task paths may not even be

executable which may be very difficult to determine.

• . .. * .. - . . l , ., ,.-,.L - ,S, ,/,.-- . ,'h'4 l ' " " '- " " " " " " - • " " %- - ",
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The DELAY statement suspends task processing for an

exact amount of time. Should its presence be considered

when deriving the scheduler algorithm? If so, the tester

must know that it is present in the program. Ada also

allows a task to quit an attempted rendevous after some

maximum delay through a construct known as a timed entry

call. The problem in doing this is the danger of never

reaching the maximum delay time and never executing state-

ments whose execution depends on reaching the maximum

delay.

All of the above problems necessitates looking at the

actual Ada code for testing. Pascal-like language testing

approaches do not address the above issues. Testing

guidelines are given in Chapter 4.

3.11. Summary

Four of the ten features are given structural testing

guidelines in Chapter 4. The features are subprogram

default parameters, generic program units, exception han-

dling, and tasks. These features require different struc-

tural testing approaches or have structural testing impli-

cations not covered in Chapter 2.

The other six features are not addressed in Chapter

4. Pascal-like language structural testing approaches are

adequate for the structural testing of these features. hx

,, ',, : ' -:'.-::." ': _,-,. '. 'W d,= L -W d........... .," .-. " . -... --. .. .....,¢...



CHAPTER 4

TESTING GUIDELINES

In this chapter testing guidelines are given for Ada

programs. These guidelines are presented through a gen-

eral testing strategy and include additional structural

testing guidelines for certain Ada features.

The general testing strategy applies to Ada as a

whole. Additional structural testing guidelines for cer-

tain Ada features are presented. They are to be used as a

supplement to the general testing strategy. These guide-

lines are needed because Pascal-like language structural

testing approaches are not adequate for the structural

testing of these features. This was established in

Chapter 3. The guidelines address the problems/questions

raised in Chapter 3 for each feature.

The features receiving the additional guidelines are

subprogram default parameters, generic program units,

exception handling, and tasks.

4.1. General Testing Strategy

The general testing strategy is based on the testing

methods and testing steps of Chapter 2. This entails

using the testing methods of functional testing and

50
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structural testing. For additional information on test

data design see [26]. Structural testing is based on a

Pascal-like language structural testing approach. It

should be supplemented with the structural guidelines

given below for certain Ada features.

Some of the supplemental guidelines are based on the

assumption that a structural testing statement coverage

metric may not be met (i.e. statement coverage). These

guidelines could be already satisfied if a metric is met.

They will be annotated to reflect that fact.

Some supplemental guidelines can be met by a Pascal-

like language testing metric. They are included because

not everyone will test to meet a structural testing

metric. It is important that a structural testing metric

be met to properly test the feature. For that reason,

those guidelines are given. If a structural testing

metric is met during testing, then guidelines that can be

satisfied by meeting that structural testing metric can be

ignored.

The general testing strategy involves four testing

steps. They are unit testing, integration testing, vali-

dation testing, and system/acceptance testing.

Perform unit testing using the testing methods of

Chapter 2. If the unit test involves subprogram default
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parameters, generic program units, exception handling, or

tasks, then supplement the unit testing with the appropri-

ate additional structural testing guidelines. The

developer of the code should perform unit testing.

The next testing step is integration testing. Per-

form builds and threads integration testing with a

bottom-up emphasis. This means integrating threads of

routines starting at the bottom level of the program and

working up from there. Use the functional testing method

of Chapter 2. Structural testing in this step is used to

insure that each interface (invocation) is executed. Each

unit of code does not have to meet a structural testing

metric. That should have been accomplished during unit

testing. If the code being integrated involves generic

program units, exception handling, or tasks, then supple-

ment the structural testing with the appropriate addi-

tional structural testing guidelines. A test team should

perform integration testing.

The final steps are validation and system/acceptance

testing. Both are performed using only functional testing

test cases. No supplemental testing guidelines are neces-

sary. A test team from the selling organization should

perform validation testing. A test team from the buying

organization should perform system/acceptance testing.
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4.2. Subprogram Default Parameters

The testing guidelines given for subprogram default

parameters are for the subprogram developer at the unit

testing level. Testing is done at the unit testing level

because the concern is to uncover errors within the boun-

dary of the subprogram. Unit testing is done through the

use of simulated invocations.

Simulated invocations are accomplished by drivers

which provide input to the unit being tested. They allow

the tester the capability to test a particular subprogram

default value or a combination of subprogram default

values for the given subprogram. The tester can derive as

many test cases as necessary without knowledge or caring

whether or not a subprogram default value or a combination

of default values is always/never used in actual invoca-

tions of the subprogram. This is not possible during

validation, system/acceptance testing or integration test-

ing not involving drivers because invocations cannot,

without recompilation, be altered. If a subprogram

default value is not used in any invocation of a subpro-

gram during system testing there is nothing the tester can

do to test it unless he changes the code.

The tester should look at the subprogram specifica-

tion of the subprogram to be tested and determine if a

,- .............................
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subprogram default value(s) is declared. If a default

parameter(s) is declared then that value(s) should be used

in a test case(s) as described below.

Execute all the subprogram default values together in

one test case. This is justifiable because an invocation

of the subprogram can default to all of the default

values. This test case will uncover errors that occur

only if all the default values are used together. For

example, see Figure 10. Procedure CALC performs scien-

tific calculations that involve variables that can have

default values when CALC is invoked. If all the default

values are used at the same time, a divide by zero error

will occur when computing RESULTI . This error is

uncovered only if all of the default values are used

together.
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procedure CALC (DVI: in NUM 1;
DV2: in NUM 2;
DV3: in NUM 20;
DV4: in NUM 40;
RESULTI : out NUM;
RESULT2 : out NUM;
RESULT3 : out NUM) is

RESULTI DV4 / ((DVI * DV2 * DV3) - DV4);

if'iDV1 1= 1) and (DV2 /= 2) and (DV4 /= 40)
then

for INDEX in I..DV3
loop
RESULT2 := RESULT2 / (20 - INDEX);
end loop;

end if;

if (DVI /= 1) and (DV2 /= 2)
then

RESULT3 := DV3 ** DV4

end CALC;

Figure 10. Errors Caused by Default Values.

Next test each default value one at a time. If there

are four default values, as in Figure 10, then this

translates into four test cases. This uncovers an error

that occurs only if a test case is executed comprised of

the one default value. An example of this is shown in

Figure 10. The statement where RESULT2 is calculated will

result in a divide by zero error only if DV3 defaults to

its default value and DVI, DV2, and DV4 do not default to

their default values.

• " -". -- --- .- , ,". .-.- , - , .. ,< -. /< -. ./ .... ,.-. , i.- . -. >,-,7 ,1-....-..,, - - .,.
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The four default parameters in Figure 10 translate

into 2 to the 4th power minus 1 possible test cases if all

combinations are tested. That computes to fifteen test

cases. The subtracted one represents the test case with

no default values. Of the fifteen possible test cases,

five are already accounted for. One is the test case of

all default values and the other four are the test cases

of one default value each. This leaves ten additional

test cases that can be executed. These test cases are

comprised of other combinations of the default values.

It can be shown that each remaining untested combina-

tion of default values can result in an error that would

otherwise remain uncovered. For example, in Figure 10 if

a test case uses the default values of DV3 and DV4, and

does not use the default values of DV1 and DV2, the calcu-

lation of RESULT3 would result in a NUMERICERROR. If

this test case had not been executed, this error would

remain hidden.

In the case of the four default values it is cer-

tainly feasible and practical to execute the additional

ten test cases. However, if a subprogram has eight

default values the total possible test cases is 255 (2 to

the 8th power minus 1). This number is reduced to 246 by

executing the test case of all default values and by exe-

cuting the eight test cases of one default value each. It
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is not practical to execute the remaining 246 test cases.

It is recommended that if there are four or less sub-

program default values, then execute the remaining combi-

nations of default values. This translates into a maxinmum

of ten additional test cases. If there are five or more

default values, stop testing after the first two steps.

Five default values translate into 31 possible test cases.

Subtracting one for the test case of all default values

and five for the test cases of one default value each

leaves the possibility of executing 25 additional test

cases. Draw the line here on executing the additional

test cases unless other information suggests otherwise.

There may be errors that are only uncovered by exe-

cuting the additional test cases, but realize that there

is more testing to be done. Integration testing will test

the interfaces to the subprogram. At that time all invo-

cations of the subprogram will be executed. Validation

and system/acceptance testing will also occur. The point

is that errors caused only by the use of certain combina-

tions of default values can be uncovered in other phases

of testing.

Following is a summary of the guidelines for the

structural testing of subprogram default values.
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Execute each RAISE statement that causes an exception

to be propagated to the exception handler being tested.

This takes care of isolated RAISE statements within lower

level exception handlers and RAISE statements for user-

defined exceptions.

If the exception handler has been designed to handle

a predefined propagating exception, then strive to raise

one predefined exception from each lower level routine.

Do not attempt to raise each possible occurrence of the

exception in each routine. That is not practical. Rais-

ing one exception from each routine is sufficient. Do not

be concerned with meeting a structural testing metric in

the exception handling routine. That testing should have

occurred during unit testing.

Meeting this criteria may not always be practical.

It may not be practical when lower level routines are

several levels down in the calling hierarchy. Deriving a

test case that will cause an exception to be raised from

that lower level routine may be very difficult and time-

consuming. Use good judgement. If it is not practical to

raise an exception from a lower level routine, then do not

do it.

An example of these guidelines is illustrated in Fig-

ure 1 3. Both the HIGHERLEVEL procedure and the NESTED
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thread is integrated, the test team should determine if

the exception handlers in the thread handle propagating

exceptions. Each exception handler that: 1) has in place

all lower level routines in the calling hierarchy, and 2)

has not been tested yet, should then be tested as

described below.

All lower level routines that are in the calling

hierarchy of the routine containing the exception handler

should already be in place. This is necessary because no

lower level routine should be represented as a stub. This

includes routines not involved in propagating the excep-

tion that might have values affected by the recovery. The

status of all variables involved is under test. Using

stubs will not provide answers on the effects on variables

within the code the stub is simulating. Values passed as

parameters can have far-reaching effects on other vari-

ables throughout the program.

There is one important rule for the structural test-

ing of propagating exceptions. Test only exceptions that

a higher level exception handler has been designed to han-

dle. If the tester starts testing exceptions at random

just "to see what happens", then there is no criteria for

stopping. Do not start. Stick to testing exceptions that

have been planned for.

• ' " -.,m l , m~a_ .Am. . ... ..-.......... ..... ............ .-..............-......j
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satisfy the DD-path metric, then raise as many predefined

exceptions as necessary to meet that metric.

.... {start of a block}
declare

OVERFLOW LEVEL : exception;
begin

if FLUID > MAXLEVEL
then

raise OVERFLOWLEVEL;

if FLUID2 > MAXLEVEL
then

raise OVERFLOWLEVEL;

exception
when OVERFLOW LEVEL =>

OPEN VALVE;
ALARM;

when NUMERICERROR =>
FIX IT;

when CONSTRAINTERROR =>
RAISE;

when others =>
LOGERROR;

end;
end;

Figure 12. Unit Testing of Exception Handler.

The structural testing of exception handlers for pro-

pagating exceptions is performed by a test team and should

be done at the integration testing level because more than

one level of code is involved. Bottom-up integration

testing is ideal, but the recommended builds and threads

technique certainly facilitates this testing effort.

Integrate threads in a bottom-up fashion. Each time a new

L_. " . ".,%, '.,' %~~~ ~~~~~..... . ... °° % .. .'.'.".'... . ....-.. , .. .... %
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structural testing metric.

An example of these guidelines is illustrated in Fig-

ure 12. Recall that testing is done at the unit testing

level. Do not consider propagating exceptions from a

lower level routine. In this example there are four WHEN

clauses in the exception handler. A WHEN clause desig-

nates the action in response to a particular exception.

Statement coverage is an appropriate metric in this case

because each exception handling routine is sequential in

nature. If exception handling routines contain DD-paths,

then consider using the DD-path metric as the structural

testing criteria.

Execute each WHEN clause and each RAISE statement

within the body of the routine declaring the exception

handler at least one time. In Figure 12 one WHEN clause

contains the recovery routine for the predefined exception

OVERFLOW ERROR. There are two explicit RAISE statements

that raise it. Execute both RAISE statements. The other

three WHEN clauses have to be raised implicitly. Do not

attempt to raise all possible exceptions that cause their

execution. Raise a predefined exception for each WHEN

clause one at a time. This is all that is necessary in

this exam,..e in order to meet the statement coverage

metric. If there would have been multiple DD-paths in the

example exception handler routines and the tester wants to

-"- ' -' .- -" : :'': : : .':: <: :---:-:- . ==== =.=== .= ==.====
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Do consider RAISE statements that cause an exception

to be propagated upward from the unit of code being

tested. These RAISE statements cause exceptions that can-

not be handled by the exception handler undergoing unit

testing. Execute each of these RAISE statements. It is

necessary to do this because the tester wants to make sure

that each RAISE statement can be reached. Do not attempt

to implement (via a driver) an exception handler to accept

the propagating raise. Let the code fail. Propagating

raises will be tested during integration testing.

Make sure that each RAISE statement, which invokes

the exception handler undergoing unit testing, is executed

even if several raise the same exception. It is important

to test if the program recovers from each erroneous condi-

tion for which there is a RAISE statement.

If a predefined exception has been declared, do not

attempt to raise each possible exception that causes its

exception handler to be executed. That attempt should not

be made because predefined exceptions are implicitly

raised. This means that they can be raised from many dif-

ferent statements in many different ways. The bottom line

is that predefined exceptions create implicit control

paths. To try to determine each control path is not prac-

tical. Raise as many predefined exceptions as necessary

to have their respective exception handlers meet a
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appropriate test instantiation(s), but do not test

these as extensively as the first test instantiation.

Use the same invocation that was created to test the

initial test instantiation to test these

instantiation(s). It is recommended that the tester

perform functional testing, but do not perform boun-

dary testing or meet a structural testing metric.

Following is a summary of the guidelines for the

structural testing of generic program units at the

integration level.

(1) Determine if an instantiation has taken place for a

generic program unit in any of the thread routines

integrated. If so, test it using functional testing

test cases.

4.4. Exception Handling

These structural testing guidelines for exception

handlers are given for unit testing and integration test-

ing.

The first focus is on unit testing guidelines. The

structural testing in this case should be done at the unit

testing level by the developer of the exception handler.

Do not consider the possibility of propagating exceptions

from a lower level routine.

.. - , .. . o . . • - - . - °- . o . . j ° ° - - °- . .° ..o • o .. - ..- .. "." °. 
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(1) Identify the types of the generic parameters. These

types are found in the generic part. Check Figure 11

to determine compatible actual parameters for each

generic type. Create a test instantiation with no

default values using Figure 11 as a reference to

determine data types. The data types declared in the

instantiation should be of type integer whenever pos-

sible.

(2) Create an invocation to test the test instantiation.

(3) Perform functional testing. Be sure and perform

thorough boundary testing as this is the only instan-

tiation in which boundary testing will occur. This

is part of the general testing strategy but cannot

occur until the first guidelines have been followed.

Next test the generic routine using a structural

testing metric. This will be satisfied by meeting

the statement coverage metric.

(4) Determine if generic default parameters or generic

subprogram default parameters are defined in the gen-

eric part. If so, test those default values follow-

ing the guidelines given for subprogram default

parameters. Note that a test case for subprogram

default parameters translates into a test instantia-

tion for generic default values. Create the
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never change once instantiated. Do not test boundary

values or the structure of the generic routine again.

That has already occurred.

Generic program units should also be tested during

integration testing. Thorough structural testing, logic

testing, and boundary testing occurred during unit testing

so it is not necessary to do those types of testing again.

The integration testing of a generic routine is

analogous to the integration testing of a unit tested pro-

cedure. The concern at this point is on interface errors

and functional validity.

It is recommended that the generic program unit, when

instantiated during integration testing, be integrated

using functional testing test cases. This guideline

recommends using functional testing when these are sup-

posed to be structural guidelines. The reason this guide-

line is given is so the test team will know what to do

when they come across an instantiation during integration

testing.

Following is a summary of the guidelines for the

structural testing of generic program units at the unit

testing level.
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instantiation of a generic routine. However, the error

was not because of the data type given for the actual

parameter. The error was a result of not testing the

sorting of one element. This was a logic error that

should have been uncovered during unit testing by logic

t ,sting. If the generic routine would have been tested

during unit testing for the sorting of one element,

regardless of the type of data being sorted, the error

would have been uncovered. Instead it was uncovered after

the program was operational.

If no default values are present, unit testing is

complete. If default values are present, then additional

test instantiation(s) are recommended. Test the generic

default values/generic subprogram default values by fol-

lowing the guidelines given for the unit testing of sub-

program default parameters in the previous section. For

example, the first instantiation involving defaults will

consist of all the default values. This parallels guide-

line #1 for subprogram default parameters.

For each test instantiation at this point, use the

same functional testing strategy used during the testing

of the initial test instantiation. The same test cases

could possibly be used again. The only test data that

will change are the default values and they are not truly

test data because they are constants. Those values can

• ~~. 2 . . - . . o o . o ,°.-,o ' .o ° •
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large size. Use the minimum and maximum integer values

for array bounds if the array is unconstrained. The point

is to do boundary testing and integer values facilitate

this type of testing.

Integer types cannot be used for generic types #3,

#6, and #7 shkn in Figure 11. The tester must use the

actual type indicated. For example, the floating point

data type must be used for generic type #7. Again, derive

test cases to test boundaries.

The above guidelines are given concerning recommended

data types to use during testing. They provide guidance

on the question of how many instantiations should be

tested during unit testing. The developer cannot possibly

anticipate how the generic routine will be instantiated in

every case. If the generic type parameter #1 is supposed

to work for any data type, then test one data type for it

in the initial test instantiation. From Figure 11 it is

recommended that the integer data type be used for generic

type #1. The integer type will then be used in the ini-

tial test instantiation.

The example given in section 3.8 of Chapter 3 con-

cerning there being no guarantee that a generic routine

will function without error for every instantiation is

true. In the example, an error is uncovered after a new
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(1) type GENERAL PURPOSE is limited private;
- matches any data type
- use integer type

(2) type ELEMENT is private;
- matches any type that permits assignment and

test for inequality
- use integer type

(3) type LINK is access OBJECT;
- matches any access type designating the same

type of object
- use access type

(4) type ENUMERATION is (<>);
- matches any discrete type
- use integer type

(5) type INTEGER ELEMENT is range <>;
- matches any integer type
- use integer type

(6) type FIXED ELEMENT is delta 0;
- matches any fixed point type
- use fixed point type

(7) type FLOAT ELEMENT is digits <>;
- matches any floating point type
- use floating point type

(8) type CONSTRAINED is array (INDEX) of ELEMENT;
- matches any constrained array of the same
dimensions, index types, and type of components

- use integer type for INDEX
use either predetermined type or integer type
for ELEMENT

(9) type UNCONSTRAINED is array(X range(>) of ELEMENT;
- matches any unconstrained array of the same

dimensions, index types, and types of components
- use integer type for X

use either predetermined type or integer type
for ELEMENT

Figure 11. Generic Type Parameters.

It is recommended that the tester use integer types

whenever possible in the test instantiation. Then use

boundary values like the maximum integer or the minimum

integer in test cases. If a generic type a iy is

declared then test an array of size one and an array of a

........................................t", e ,,'...-.."--..7
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The data types used in this test instantiation depend

on the types of the generic parameters. For example, see

Figure 11 [4]. It contains a list of all generic type

parameters. With each type a compatible actual

parameter(s) is defined. For example, generic type pa:,am-

eter #1 in the Figure matches any data type. This means

that any type of data is allowed for this generic type

during an instantiation of the generic routine.

S.
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whether or not default subprograms are declared for for

generic subprogram parameters. This information is used

to derive test instantiations and to determine how many

test instantiation to derive.

Test instantiation(s) are used to test the generic

routine. The number of test instantiations needed to test

the generic routine depends on the number of default gen-

eric parameters/generic subprogram parameters. If no

defaults are present then only one test instantiation is

necessary. If defaults are present, then more than one

test instantiation is necessary.

The first test instantiation involves no default

values. If no default values are defined, then this is

not an issue. This instantiation will serve as the only

test instantiation needed.

The tester should execute test cases that enable a

structural metric to be met. Test cases should also

thoroughly test the logic of the routine and incorporate

boundary testing. A case study is provided in Chapter 5

that demonstrates these test cases. This is the only

instantiation in which the logic is to be thoroughly

tested. Test data is input via a driver that simulates an

invocation of the generic routine.
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(1) Execute one test case consisting of all default

values.

(2) Execute test cases consisting of one default value at

a time.

(3) If there are four subprogram default values or less,

then execute test cases consisting of all remaining

combinations of default values. This is a maximum of

ten additional test cases.

(4) If there are more than four default values, do not

execute any more test cases. To execute all remain-

ing combinations of default values translates into a

minimum of 25 additional test cases.

4.3. Generic Program Units

The testing guidelines for generic program units are

given for unit testing and integration testing. The

developer of the generic routine performs unit testing and

a test team performs integration testing.

When the generic routine is unit tested, the tester

should investigate the "generic part" of the routine.

Recall that it is a prefix to a subprogram or package

specification. Three pieces of information should be

derived: the type of each generic parameter, whether or

not default values are defined for generic parameters, and

Z!
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procedure have already been unit tested. The procedure

being tested in this example is the HIGHERLEVEL procedure

because it has been designed to handle exceptions pro-

pagating from the NESTED procedure. Assume that the

HIGHER LEVEL exception handler has been designed to handle

only propagating exceptions of types OVERFLOWLEVEL and

CONSTRAINTERROR.

_.'.
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procedure HIGHER LEVEL is
OVERFLOW LEVEL: exception;
procedure NESTED(X : in NUM);

procedure NESTED(X : in NUM) is
LOCALERROR : exception;

begin {NESTED}

if FLUID > MAX LEVEL
then

raise OVERFLOW LEVEL;

exception
when LOCAL ERROR =>

FIX LOCAL;
when CONSTRAINTERROR =>

raise;
end;

end NESTED;

begin {HIGHERLEVELI

exception
when CONSTRAINT ERROR =>

FIX GLOBAL;
when OVERFLOW LEVEL =>

OPEN VALVE;
ALARM;

when NUMERICERROR =>
FIXNUMERIC;

end;
end HIGHER LEVEL;

Figure 13. Integration Test of Exception Handler.

The test team should execute the explicit RAISE

OVERFLOW FLOW statement in the NESTED procedure. If there

were more, then each would be executed. The test team

should also implicitly raise one CONSTRAINTERROR excep-

tion in the NESTED procedure. If there were a nested pro-

*.* *.. . - " . "- ,9 9.'- ' - . .. - - i... . . . .. . , . .. I
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.P cedure within the example NESTED procedure, then one

CONSTRAINT ERROR exception would be raised from that pro-

cedure also. Both the CONSTRAINT ERROR and OVERFLOW ERROR

exceptions are raised because they are designed to be han-

died in the HIGHER LEVEL exception handler. It is not

necessary to raise a predefined NUMERICERROR exception

from the NESTED procedure because the HIGHER LEVEL excep-

tion handler is not designed to handle a propagating

exception of that type.

The strategy for testing exception handlers differs

with respect to the testing step. The developer should

test it at the unit testing level for exceptions raised

within the unit and the test team should test it again

during integration testing if it is designed to handle

propagating exceptions.

Remember that functional testing will also cause many

exceptions and uncover errors in the exception handlers.

Thorough functional testing is a great aid in testing

exception handlers, especially exception handlers that

handle propagating exceptions.

Following is a summary of the guidelines for the

structural testing of exception handlers at the unit test-

ing level where propagating exceptions are not an issue.

,,- .,p :.'.:::.:::,? .-.,.. .:!.< .? -.-.- ,.-.- :-:::, , .. :.....:.: .. . . .. .. ,.:.:-' .: : ,--: - - .:.: :.:::.::::: . ..::.:.::::::::-..- .
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(1) Test the exception handler using a structural testing

metric. This guideline will be satisfied by meeting

the statement coverage metric for the exception

handler.

(2) Execute each RAISE statement that invokes the excep-

tion handler even if several raise the same excep-

tion. This guideline will be satisfied by meeting

the statement coverage metric for the routine con-

taining the exception handler.

(3) Determine if the exception handler is defined for a

predefined exception(s). If so, do not attempt to

raise each possible exception that will cause a par-

ticular exception handling routine to be executed.

Raise only as many predefined exceptions as necessary

for the exception handling routine to meet a struc-

tural testing metric.

(4) Execute RAISE statements that result in the propaga-

tion of an exception out of the routine being unit

tested. There is no exception handler for the excep-

tion and the program will fail, but the statements

must be executed to show that they can be reached.

Following is a summary of the guidelines for the

structural testing of exception handlers at the integra-

tion testing level. Propagating exceptions to the

', ." r, " " ', ":,' " , . .i "" "" - ' " ' :" " """" "" "" " < " " " "" o " - ' " . '
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exception handler are raised from lower level routines.

(1) When a thread is integrated, determine if exception

handlers within that thread are designed to handle

propagating exceptions. If all lower level routines

in the calling hierarchy of the routine containing

the exception handler are present (not stubbed) then

the exception handler is ready for the remaining

guidelines. If all lower level routines are not yet

present, do not test the exception handler at this

time. Test it at a later time when all lower level

routines in the calling hierarchy are present.

Remember to see if exception handlers, not previously

ready, are now ready for testing. An exception

handler will be ready for testing if all lower level

routines are now present.

(2) Test only propagating exceptions that the exception

handler has been designed to handle.

(3) Determine if the exception handler is designed for a

user-defined exception(s). If so, identify each

RAISE statement in lower level routines that cause an

user-defined exception to be propagated to the excep-

tion handler. Derive a test case for each RAISE

statement that will cause it to be executed. Execute

each test case.

, -,,-..-. . .. - -.- ....-.. °.. . . ,.....-. ..... ........... .... -.... ,.. -.... -. . .. -. ,
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(4) Determine if the exception handler is designed for a

predefined exception(s). If so, identify each lower

level routine that can propagate a predefined excep-

tion to the exception handler. Identify a statement

within each lower level routine that can raise the

desired exception. Derive a test case for each

statement that will cause the statement to raise the

desired exception. Execute each test case. If it is

not practical (too difficult and time-consuming) to

raise an exception from a particular lower level rou-

tine, then do not do it.

4.5. Tasks

Tasks present many problems/error possibilities for

the tester as noted in section 3.10 of Chapter 3. One of

the problems concerns the structural testing of tasks.

The objective of the tester should be to execute all

possible sequences of concurrency related events, which is

in a sense path testing. This will uncover synchroniza-

tion errors and deadlock. The problem for the tester is

in determining all possible concurrency scenarios. If

several tasks are involved, the number of possible

scenarios can be unmanageable.

One way to help manage all the scenarios is through

the use of automated tools. Research and development led

,,,-, *, ~ ima *.mm ~ llm nnln I. .I ~ ... I..
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by R. Taylor is ongoing at the University of California,

at Irvine on the testing of tasking programs using

automated tools [5]. The automated tools being developed

employ static analysis and dynamic analysis techniques.

These tools are part of several Ada software development

tools that make up an APSE (Ada Programming Support

Environment). At Cal-Irvine this environment is called

Arcturus. It is not known when these tools will become

commercially available.

The static analysis technique's objective is "to

determine, for a given program, all possible sequences of

concurrency events". [5] The tester will gain a knowledge

of all synchronization that may occur during the execution

of the program. Information derived from static analysis

include the identification of all possible rendevous,

detection of any deadlocks that may occur, and a listing

of all parallel program activities.

There are problems with this technique. Determining

all possible sequences of concurrency events can take a

large amount of time. Static analysis is only accurate

with static entities. The analysis is done independent of

the actual execution environment. For example, the impli-

cations of DELAY statements are not taken into account.

Finally, static analysis assumes that each intra-task path

is executable.

• - • . • Q ,...-........ . ............................
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The advantage of static analysis is that all possible

sequences of concurrency related events are determined.

This also helps in deriving test cases.

In dynamic analysis the Ada program A is transformed

into another program A' (instrumented), so that A and A'

have the same set of possible errors. During execution,

A' will detect the imminency of deadlock, report the con-

dition, and allow evasive action.

The dynamic analysis technique is not hindered by

some of the problems associated with static analysis. The

use of dynamic entities presents no problems and nearly

all Ada constructs (i.e. DELAY statements) are taken into

consideration.

Dynamic analysis has its problems, too. The error

monitoring instrumentation can mean high overhead during

execution. The presence of instrumented code can also

disturb timing properties. "The overhead induced by the

instrumentation may cause an observed phenomenon to disap-

pear, though the potential for that error still remains"

[5]. An example of this is shown in [27].

Another limitation is that error-free runs do not

prove correctness of code.
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Taylor [5] concludes the discussion by suggesting

that static and dynamic analysis have complimentary

characteristics. Thus, their joint use can counter each

other's weaknesses. For example, static analysis results

can help in reducing dynamic analysis overhead. If cer-

tain tasks have been tested to meet some criteria, then

the instrumentation used for their monitoring may be elim-

inated, reducing overhead.

Taylor states that "no claim is made that the tech-

niques presented are adequate" [5]. If the techniques

described above, which use automated tools, are not ade-

quate in testing tasks, then the present Ada tester is at

a real disadvantage. He does not have automated tools at

his disposal and it is not known when they will be at his

disposal.

The testing guidelines which follow will compensate

for the lack of automated testing tools.

These structural testing guidelines for tasks are

given for unit testing and integration testing. The

developer of the task performs unit testing and a test

team performs integration testing.

During unit testing execute each entry call and

ACCEPT statement in the task body one time. Use

stubs/drivers to provide proper responses. This will be

-6- J6.
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satisfied by meeting the statement coverage metric.

Determine if an array of tasks is declared or if the

task can be created dynamically. Both the array of tasks

and dynamic tasks are created through the use of a task

type. A task type defines a template that may be used to

create multiple tasks of the same type (same specification

and body).

An example of an array of tasks is shown in Figure

14. Task SECURITY is a type. Any number of SECURITY

tasks can be created. In this example, ALARM is an array

of 50 tasks of type SECURITY, each with entries called

ONALARM and OFFALARM. The ALARM array statement is the

declaration that activates the alarm system. This, a col-

lection of 50 tasks have been created and activated.

Entry calls to these tasks look like this:

ALARM(33) ON ALARM

ALARM(8).OFF-ALARM

o - . -- . - . . . . l -, .a Aii , - -. . • - .. .. . .
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task type SECURITY is
entry ON ALARM;
entry OFF ALARM;

end SECURITY;

ALARM : array(1..50) of SECURITY;

type SOUND is access SECURITY;
ALARMX : SOUND;

ALARM X :: new SECURITY;

Figure 14. Creating Multiple Tasks.

The task type is also useful when it is not known how

many tasks there will eventually be or if task identities

need to be changed. This is called dynamic tasking. It

is done by defining an access type to a task type. An

example of this is shown in Figure 14. Type SOUND is an

access type. A new task is activated by the "ALARMX :=

new SOUND;" statement. This one task now has entry calls

that look like this:

ALARM X.ONALARM

ALARMX.OFFALARM

It is recommended that if an array of tasks is

declared, then create the maximum number of tasks when

unit testing the task. Have each task, via a driver,

accept each entry call one time. An entry call

corresponds to an entry in the task specification.

........'' b. ""- '...:.--.,n, .*.'-* "r.*-" ,a.- ."" ""....."" ....."""""' """ .. .. '"-"'""-''.'
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If the maximum number of tasks cannot be determined

because 1) an upper array bound is not declared and 2) the

program specifications document does not indicate a max-

imum number, then create more than one task. Two is suf-

ficient. Have each task, via a driver, accept each entry

call one time.

It is recommended that if dynamic tasking is possible

that the tester check the program specification document

to see if there is a maximum number of dynamic tasks given

for the program. If there is a maximum number, then

create that maximum number of tasks during execution. If

a maximum number cannot be determined, then create more

than one task. Again, two is sufficient. For each task

created, have each entry call defined in the task specifi-

cation be accepted, via a test driver, one time.

Determine if a "family of entries" is declared for

the task. This defines a set of peer entries. Each entry

is indexed by a discrete value much like an array index.

Execute each entry call, via a driver, one time. For

example, see Figure 15. One task, COMM, is declared hav-

ing a set of different entries. These entries can be

referred to as:

COMM.SEND(HIGH) (LETTER)

COMM. RECEIVE(LOW) (LETTER)

In this example there are six possible entry calls.
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Execute each one time.

type PRIORITY is (LOW,MEDIUM,HIGH);
task COMM is

entry RECEIVE(PRIORITY)(X : out C TYPE);
entry SEND(PRIORITY)(X : in C TYP-E);

end COMM;

Figure 15. Family of Entries.

The integration testing of tasks is based on the

pair-wise rendevous. A pair-wise rendevous involves an

entry call in one task and a corresponding ACCEPT state-

ment in another task. When they communicate, a rendevous

has occurred.

The structural testing of rendevous is analogous to

the structural testing of paths. Ideally, the testing

goal for paths is to execute all logical paths in the pro-

gram. Unfortunately, as described in section 2.6 of

Chapter 2, this ideal cannot be reached because obtaining

it involves exhaustive testing. So a more practical goal

is to select a small but sufficient set of test paths to

meet a structural testing metric.

The same holds true for rendevous. Ideally, the tes-

ter would like to execute all logical rendevous paths in

the program. This ideal also cannot be reached because

obtaining it involves exhaustive testing. So a more

"' -v " "" "" "" """" "',- ,- -,. ,. •,o-"". • , ,....-'""- " ...... "-......-.........-.....-...,."-...-.-."-......."-........
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practical goal of executing all pair-wise rendevous one

time is recommended.

This metric is met as follows. When a thread of

tasks (one or more tasks) is integrated, the test team

should identify all entry calls in the tasks. They should

then identify all corresponding ACCEPT statements in

another task for each entry call. Each of these pairs is

a pair-wise rendevous.

For an example of determining pair-wise rendevous see

Figure 16. Recall that a task reaching an entry call or

ACCEPT statement may not proceed until a rendevous has

been made. An exception to this rule is if a timeout con-

dition is in effect. This information will help in deter-

mining pair-wise rendevous. In Figure 16 it appears that

there are four pair-wise rendevous between the two tasks:

1-3, 1I-4, 2-3, and 2-4. Actually, the 1-4 and 2-3 rende-

vous, assuming no timeout condition, will never occur

because of the way Ada implements the rendevous mechanism.

The test team should therefore execute the 1-3 and 2-4

rendevous one time.
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task TASKI;
task TASK2 is

entry ACTIVITY;
end TASK2;
task body TASKI is

TAK2.ACTIVITY; {1}

TASK2. ACTIVITY; {21

end TASKI;

task body TASK2 is

accept ACTIVITY; 131

accept ACTIVITY; {3}

end TASK2;

Figure 16. Task Rendevous.

If the task containing the ACCEPT statement has not

yet been integrated the test team should take the follow-

ing steps. Develop a stub to provide the proper response

for the entry call during current testing. Annotate the

entry call to make sure that it is executed later when the

task containing the corresponding ACCEPT statement(s) is

integrated. The ideal would be for all tasks to be

integrated at the same time, but in large programs this is

not a good integration testing strategy (big bang test-

ing).

If the task containing the corresponding ACCEPT

statements is present when the task containing the entry
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call is integrated, then derive test case(es) that will

cause the rendevous. Then execute each test case.

When integration testing is complete, every entry

call and ACCEPT statement should have been involved in the

execution of one rendevous.

Following is a summary of the guidelines for the

structural testing of tasks at the unit testing level.

(1) Test the task using a structural testing metric.

This guideline will be satisfied by meeting the

statement coverage metric.

(2) Determine if a "family of entries" is declared. If

so, execute each entry call, via a driver, one time.

(3) Determine if the task can be defined as an array

(collection) of tasks. If so, determine if there is

a maximum number of tasks by looking at the array

statement or by checking the program specification

document. If the maximum number can be determined

then create that number of tasks. If the maximum

number cannot be determined, then create more than

one task. Regardless of the number of tasks, have

each task, via a driver, accept each entry call one

time. An entry call corresponds to an entry in the

task specification.
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(4I) Determine if the task can be dynamically created. If

so, follow guideline 2 in this set of guidelines

except for one statement. The determination of

whether there is a maximum number of tasks cannot be

determined by looking at an array statement. Refer

to the program specification document.

Following is a summary of the guidelines for the

structural testing of tasks at the integration level.

(1) Identify all entry calls in the thread of tasks being

integrated. Identify all corresponding ACCEPT

statement(s) for each entry call by looking at other

tasks. This determines the pair-wise rendevous. If

an identified ACCEPT statement is in a task that has

not yet been integrated, then stub it until the task

containing it is integrated. Make sure the rendevous

is executed later when the task is integrated.

(2) If an identified ACCEPT statement is in a task that

is present, then derive a test case that will cause

the rendevous. Then execute the test case. This

will meet the criteria of executing all pair-wise

rendevous one time.
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CHAPTER 5

CASE STUDIES

In this chapter, four case studies are presented to

demonstrate the testing guidelines given in Chapter 4.

Each case study corresponds to one of the features for

which there are supplemental guidelines.

Each case study consists of a sample routine, sample

test cases, and a step by step description of how to apply

the supplemental guidelines of Chapter 4 when testing this

routine. The step by step description is located in this

chapter. The sample program and test cases are located in

appendices.

Each numbered step for a feature in this chapter

corresponds to the numbered guideline for that feature in

chapter four. The same numbered step also corresponds to

a numbered test case in the appropriate Appendix.

The test cases consist of functional test cases,

Pascal-like language structural test cases, and test cases

that result from following the supplemental guidelines.

The functional and Pascal-like language structural test

cases are given to show how the supplemental guidelines

fit in to the general testing strategy. Assume that

Im
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statement coverage is the structural testing metric.

A case study is presented for subprogram default

parameters, generic program units, exception handling, and

tasks.

5.1. Subprogram Default Parameters

The sample routine and test cases for this case study

are located in Appendix A.

There are two default parameters in the COSTS pro-

cedure: QTY and UNITPRICE. The default value for QTY is

10 and default value for UNITPRICE is 10.00. Assume

other routine(s) have done error checking on the data

passed to the COSTS procedure. This results in perfect

data being passed to COSTS. Assume the specification

document has established a maximum discount of 50%.

The testing of COSTS in this case study occurs at the

unit testing level. Functional and structural test cases

are shown before the test cases that result from following

the supplemental guidelines for subprogram default parame-

ters.

The functional testing method utilized to derive the

functional test cases is equivalence class testing. QTY

is the variable that is broken into equivalence classes.

The three classes are reflected in the case statement in
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COSTS. The minimum (0%) and maximum (50%) discounts are

also tested in the first and last functional test cases.

No structural testing test cases are needed because

the statement coverage metric was met during functional

testing.

Following is a step by step description of the unit

testing supplemental guidelines for subprogram default

parameters.

(1) This test case consists of all default values

declared for COSTS. QTY equals 10 and UNITPRICE

equals 10.00.

(2) These two test cases consist of one default value

each. Test case 2a has QTY equal to 10 and test case

2b has UNITPRICE equal to 10.00.

(3) There are two default parameters. The criteria of

four or less default values is met. However, no more

test cases are necessary. The reason is that all

combinations of the two default values have already

been tested. Therefore, unit testing of COSTS is

complete.

(4) There are not four or more default parameters. This

guideline is ignored.
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5.2. Generic Program Units

The sample routine and test cases for this case study

are located in Appendix B.

One generic default parameter is defined. It is

ORDER and its default value is ASCEND. Assume that the

specifications document states that the maximum number of

elements to be sorted is 500. Assume perfect data to be

sorted is passed to the generic routine.

Following is a step by step description of the unit

testing supplemental guidelines for the generic sample

routine.

(1) Three types are identified ir the generic part.

Referring to Figure 11 in chapter four, the generic

type parameters are numbers 2, 5, and 9. The actual

data type for each in the first test instantiation is

INTEGER. The test instantiation is created with no

default value.

(2) An invocation is created. It is used to test the

generic routine.

(3) First perform functional testing. Recall that even

though functional testing is part of the general

testing strategy, it cannot occur until the first two

guidelines have been followed. Test case 3a contains

-°-- .Q..°. ....... -.............- - ... °o .- .-........ o- ....... ....
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integers in ascending order while test case 3b con-

tains integers in descending order. Test case 3c

consists of integers that are in no particular order.

Test cases 3d and 3e consist of two integers in dif-

ferent orders. Test case 3g consists of the maximum

number of integers (500). Test case 3h consists of

the minimum and maximum integer values allowed. No

structural test cases are needed because the state-

ment coverage metric was met during functional test-

ing.

(4) A generic default value is defined. The parameter is

ORDER and its default value is ASCEND. One test

instantiation is created using the default value.

Use some of the test cases that were derived for the

first test instantiation. These are test cases 3a-

3g. The other test case is a boundary test case and

it needs to be executed only during the testing of

the initial test instantiation. Use the invocation

that was used to test the first instantiation (2) to

test this test instantiation. There is just one

default parameter, so no more test instantiations are

necessary. The unit testing of this generic routine

is complete.

The remaining guideline is for an instantiation that

occurs during integration testing. Simply test each
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instantiation with functional test cases.

5.3. Exception Handling

The sample routine and test cases for this case study

are located in Appendix C.

The procedure LEVEL_1 exception handler is the focus

of this case study. Procedure LEVEL_2 is called by pro-

cedure LEVEL_1 and procedure LEVEL_3 is called by pro-

cedure LEVEL_2. Assume the lower bound of array TABLE is

1 and the upper bound is 100.

The testing of the procedure LEVEL_1 exception

handler occurs first at the unit testing level. Assume

that the structural testing metric statement coverage is

for the main body (statements 1-20). Functional and

structural test cases are shown before the test cases that

result from following the supplemental guidelines for

exception handlers.

The functional testing method utilized to derive the

functional test cases is equivalence class testing. A is

the variable that is broken into equivalence classes. The

test cases a, b, and c are based on classes that are

reflected in the case statement (statement 2). Assume

that management has decided that equivalence class testing

is sufficient for LEVEL_1.
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After functional testing, LEVEL_1 statements 8,9,17,

and 18 in the main body have not been executed. Struc-

tural test cases are needed. Test case d will cause the

execution of statements 8 and 9. Test case e will cause

the execution of statements 17 and 18. The statement cov-

erage metric is now met for the main body of LEVELI.

Following is a step by step description of the unit

testing supplemental guidelines for the LEVEL_1 exception

handler.

(1) The statement coverage metric has not been met for

the exception handler. Only statements 22-28 were

executed during functional and structural testing.

Statements 24-25 were executed by test case d as the

Li _ERROR exception is raised at statement 9 because A

equals 130. Statements 23 and 26-28 were executed by

test case c as the LI ERROR exception is raised at

statement 14 because D equals 550. Supplemental test

cases must be executed to raise exceptions that will

cause the execution of the remaining exception

handler statements. Test case la will raise a

CONSTRAINTERROR exception which results in the exe-

cution of statements 29 and 30. The CONSTRAINTERROR

exception is raised from statement 10 because A

equals 0. Test case lb will raise a NUMERICERROR

exception which results in the execution of
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statements 31 and 32. The NUMERICERROR exception is

raised from statement 20 because A equals 43 and C

equals 100. The remaining two statements, 33 and 34,

are raised by a driver routine that contains the

statement "raise L3_ERROR". This satisfies the

statement coverage metric for the exception handler

routine.

(2) Each explicit RAISE statement that invokes the excep-

tion handler has been executed. The RAISE statement

of statement 9 was executed by test case d. The

RAISE statement of statement 14 was executed by test

case c.

(3) The LEVEL_1 exception handler is designed to handle

the predefined exception CONSTRAINT ERROR. The

structural testing metric has already been met in the

exception handling routine for a CONSTRAINTERROR by

executing test case la. No more test cases are

necessary.

(4) There are two RAISE statements that cause an excep-

tion to be propagated out of LEVEL_1. The RAISE

statement at statement 18 was executed by test case

e. The RAISE statement at statement 32 was executed

by test case lb. No more test cases are necessary.
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This concludes the unit testing of the LEVEL_1 excep-

tion handler. Next is a description of test cases for the

integration testing of the LEVEL_1 exception handler.

Use the same functional test cases, a-c, that were

used during the unit testing of LEVELI.

Following is a step by step description of the

integration testing guidelines for this thread. Assume

that all three procedures in the sample routine are in the

same thread.

(1) The LEVEL 1 exception handler is designed to handle

two propagating exceptions: CONSTRAINTERROR and

L3_ERROR. All lower level routines for LEVEL1 are

present.

(2) L3_ERROR and CONSTRAINTERROR are the propagating

exceptions that the LEVEL-I exception handler is

designed to handle. A NUMERICERROR exception will

not be handled at LEVEL_ . It is propagated upward.

(3) The exception handler is designed for the user-

defined exception L3_ERROR. That exception can be

raised only from procedure LEVEL_3. A raise state-

ment that can raise the exception is identified. It

is at statement 53 in LEVEL_3. Test case 3 causes

the RAISE statement to be executed.
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procedure TESTI is new BUBBLE SORT(ELEMENT => NUM,
INDEX => MEMBERS,
LIST => TABLE,
ORDER => DESCEND);

(2) TESTI (TESTLIST);

Functional Tes' Cases

(3a) -2 -1 0 1 2
(3b) 2 1 0 -1 -2
(3c) 4 -2 1 -5 3
(3d) 1
(3e) 1 -1
(3f) -1 1
(3g) A list of 500 integers
(3h) -100 10 -10 100

Structural Test Cases

Structural metric met by functional test cases

Supplement Test Cases

(4) procedure T2 is new BUBBLE SORT(ELEMENT => NUM,
INDEX => MEMBERS,
LIST => TABLE);

Functional Test Cases

Execute test cases 3a-3g from above.



109

SAMPLE ROUTINE

package GENERIC SORT is
type DIRECTION is (ASCEND,DESCEND);

generic
type ELEMENT is private;
type INDEX is range <>;
type LIST is array (INDEX range <>) of ELEMENT;
ORDER : in DIRECTION := ASCEND;
with Function ">" (A,B : in ELEMENT)

Return Boolean is <>;
with Function 11<1" (A,B : in ELEMENT)

Return Boolean is <>;
procedure BUBBLE SORT (TABLE : in out LIST);
end GENERICSORT;

package body GENERIC SORT is
procedure BUBBLE SORT (TABLE : in out LIST) is
LIMIT : INDEX-:= TABLE'LAST;
TEMP : ELEMENT;
SORTED : BOOLEAN;

begin
SORT LOOP;

loop
SORTED := TRUE;
LIMIT := LIMIT + 1;
for COUNT in 1..TABLE'LAST - 1

loop
if ((TABLE(COUNT) > TABLE(COUNT + 1)) and

ORDER = ASCEND) or
((TABLE(COUNT) < TABLE(COUNT + 1)) and

ORDER = DESCEND) then
SORTED := FALSE;
TEMP := TABLE(COUNT);
TABLE(COUNT) := TABLE(COUNT + 1);
TABLE(COUNT + 1) := TEMP;

end if;

end loop;
exit SORT LOOP when SORTED;

end loop SORTLOOP;
end BUBBLE SORT;
end GENERICSORT;

SAMPLE TEST CASES

(1) using these types:
type NUM is range -100..100;

type MEMBERS is range 1..500;
type TABLE is array (MEMBERS range <>) of NUM;
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SAMPLE ROUTINE

procedure COSTS (QTY : in INTEGER 10;
UNIT PRICE : in REAL 10.00;
DISCOUNT COST : out REAL;
INITIAL COST : out REAL;
L DISCOUNT : in REAL;
L DISCOUNT : in REAL;
M-DISCOUNT : in REAL) is

begin
INITIAL COST := QTY * UNITPRICE;
case QTY iswhen 1..5 => DISCOUNT COST := INITIAL-COST*

(w.0 - L--DISCOUNT);
when 6..25 => DISCOUNT-COST := INITIAL-COST

(w.0 - M--DISCOUNT);
when others => DISCOUNT-COST := INITIALCOST

(w.0 - o sDISCOUNT;
end case1;

end COSTS;

SAMPLE TEST CASES

Functional Test Cases

QTY UNIT -PRICE L DISCOUNT M DISCOUNT H DISCOUNT
3 1_00 --C0.00 O0.05 C 0.I0

12 5.00 0.05 0.10 0.15

32 20.00 0.10 0.20 0.50

Structural Test Cases

Structural metric met by functional test cases

Supplement Test Cases

(1) 10 10.00 0.00 0.05 0.10

(2a) 10 5.00 0.05 0.10 0.20

(2b) 5 10.00 0.10 0.30 0.50

(3) Already Satisfied

(4) Not Applicable

,o '. ° o.. " -. " .. • .- ' ° ' . ' ... o " .* '°'% . .o . m ° . '% " . o. " *%~. .o -. 7,r-' ' *. ° ,



APPENDIX A

Subprogram Default Parameter Case Study

- . , - .. - , , - . ,... .. 2.,. . . .. - .- - - -



1 05

[27] S. M. German, D. P. Heimbold, and D. C. Luckham,
"Monitoring for deadlocks in Ada tasking," in proc.
AdaTEC Cont'. on Ada, Oct. 1982, pp. 10-25.



104

pp. 380-390, July 1982.

[14] L. White and G. Cohen, "A domain strategy for com-
puter program testing," IEEE Trans. Software Eng.,
pp. 247-257, May 1980.

[15] G. J. Myers, The Art of Software Testing. New York:
John Wiley and Sons, 1979.

[16] S. Rapps and E. Weyuker, "Data flow analysis tech-
niques for test data selection," in proc. IEEE 6th
Int. Conf. Software Eng., Sept. 1982, pp. 272-279.

[17] B. Beizer, Software Testing Techniques. New York:
Van Nostrand Reinhold, 1983.

[18] C. Gannon, "JAVS: A JOVIAL automated verification
system," in Proc. IEEE COMPSAC 78, Nov. 1978, pp.
539 -544.

[19] D. Casey and R. Erickson, "Practical tools for
software test certification," in Proc. IEEE COMPCON
84, Feb. 1984, pp. 87-90.

[20] R. Taylor, "An integrated and verification and test-
ing environment," Software Prac. and Exp., pp. 697-
711, Aug. 1983.

[21] J. Arthur and J. Ramanathan, "Development of tools
for selective program analysis," in Proc. IEEE COMP-
SAC 80, Oct. 1980, pp. 520-526.

[22] A. Feuer and N. Gehani, Comparing and Assessing Pro-
gramming Languages Ada, C, and Pascal. Englewood
Cliffs, NJ: Prentice-Hall, 1984.

[23] M. R. Gardner, "Experiences in Ada software produc-
tion," in Proc. IEEE COMPCON 83, Nov. 1983, pp. 404-
407.

[24] A. R. Tripathi, W. D. Young, and D. I. Good, "A prel-
iminary evaluation of verifiability in Ada," in Proc.
ACM Annual Conf., Oct. 1980, pp. 218-224.

[25] N. G. Leveson and J. L. Stolzy, "Software fault tree
analysis applied to Ada," in Proc. IEEE COMPSAC 84,
Nov. 1984, pp. 458-467.

[26] S. T. Redwine, "An engineering approach to software
test data design," IEEE Trans. Software Eng., pp.
191-200, March 1983.

--.- d. --.. . . <.-'. -. ;. ---.... . .... .; -_; ; - ;;j:: .



BIBLIOGRAPHY

I] B. Beizer, Software System Testing and Quality
Assurance. New York: Van Nostrand Reinhold, 1984.

[2] J. Collofello and G. Klinkel, "An automated Pascal
test coverage assessment tool," in Proc. IEEE COMPSAC
82, Nov. 1982, pp. 626-633.

[3] J. Collofello and A. Ferrara, "An automated Pascal
multiple condition test coverage tool," in Proc. IEEE
COMPSAC 84, Nov. 1984, pp. 20-26.

[4] G. Booch, Software Engineering With Ada. Menlo Park,
CA: Benjamin/Cummings, 1983.

[5] R. N. Taylor and T. A. Standish, "Steps to an
advanced Ada programming environment," in proc. IEEE
7th Int. Conf. Software Eng., Mar. 1984, pp. 116-125.

[6] I. C. Pyle, The Ada Programming Language. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

[7] L. K. Belden, "Toward automatic testing of flight
software," in proc. IEEE/AIAA 5th Digital Avionics
Systems Conf., Nov. 1983, pp. 7.3.1-7.3.3.

[8] , Ada Reference Manual. U. S. Dept. of Defense,
July I9-

[9] R. Pressman, Software Engineering: A Practitioner's
Approach. New York: McGraw-Hill, 1992.

[10] J. Goodenough and S. Gerhart, "Toward a theory of
test data selection," IEEE Trans. Software Eng., pp.
156-173, June 1975.

[11] K. Foster, "Error sensitive test cases analysis
(ESTCA)," IEEE Trans. Software Eng., pp. 258-264, May
1980.

[12] W. Howden, "Weak mutation testing and completeness of
test sets," IEEE Trans. Software Eng., pp. 371-379,
July 1982.

[13] L. Clark, J. Hassell, and D. Richardson, "A close
look at domain testing," IEEE Trans. Software Eng.,

... ... ... .. k. ... ... ... ...i. ... ... ... ... ..



102

tain Ada features. They are to supplement the general

testing strategy. The additional guidelines were given

for subprogram default parameters, generic program units,

exception handlers, and tasks.

Finally, case studies were provided which demonstrate

the general testing strategy and the supplemental guide-

lines. Each case study consisted of a sample routine,

sample test cases, and a step by step description of how

to apply the supplemental guidelines to the sample rou-

tine.

This thesis provides an early look at testing Ada

programs. Much more research needs to be conducted. Fol-

lowing is a list of possible future research areas.

(1) Automated test tools need to be researched and

developed for the structural testing of Ada programs.

Specifically, tools need to be developed to support

the guidelines given in this thesis. The only

presently known effort in this area is occurring at

Cal-Irvine led by R. Taylor.

(2) Th:e effectiveness of the guidelines presented in this

thesis needs to be evaluated. Are they cost-

effective? Are they adequate? Do they need to be

refined? These are some of the questions that need

to be investigated regarding this thesis.



CHAPTER 6

CONCLUSION

Practical testing guidelines have been given for Ada

programs.

A general testing background of testing was

presented. This background included a description of

functional testing methods, Pascal-like language struc-

tural testing methods, and testing steps. These methods

and steps are the foundation of the general testing stra-

tegy for Ada programs.

Ada was then analyzed from a testing point of view.

Ada features were identified that are different from

Pascal-like languages. They were then analyzed to deter-

mine if Pascal-like language structural testing methods

are adequate for the structural testing of the feature.

The feature was briefly described and problems/errors that

might occur when using the feature were described. If a

new structural testing approach was needed, then testing

guidelines were provided for that feature in Chapter 4.

A general testing strategy was then presented. It

detailed how Ada should be tested as a whole. Then addi-

tional structural testing guidelines were given for cer-

,I
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testing.

Use the same functional test cases, a and b, that

were used during the unit testing of PLAYER. Also execute

test case c to check the efficiency/performance of the

tasks.

Following is a step by step description of the

integration testing supplemental guidelines for this

thread. Assume that all 3 tasks in the sample routine are

in the same thread.

(1) All entry calls are identified. They are: statement

b in scorer; statement d in DEALER; and statements g

and h in PLAYER. All ACCEPT statements for each

entry call are identified. There are four pair-wise

rendevous. They are: b-e between SCORER and DEALER;

d-f between DEALER and PLAYER; and g-a and h-c

between PLAYER and SCORER. All ACCEPT statements are

in tasks that have been integrated.

(2) Test case a or b will cause each rendevous to be exe-

cuted. This meets the criteria of executing each

pair-wise rendevous once.
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The functional testing method is very simple. There

is no input to the task. -here is a certain number of

players (PLAYER tasks) that is determined by the type

TABLE declaration. Test case a is for one PLAYER task.

There is no maximum number of players that can play so

test case b is for two players.

No structural testing test cases are needed because

the statement coverage metric was met during functional

testing.

Following is a step by step description of the unit

testing supplemental guidelines for the PLAYER task.

(1) The PLAYER task has already met the structural test-

ing metric. This was met by the functional test

cases.

(2) A family of entries is not declared.

(3) The tasks can be defined as an array of tasks. The

maximum number of tasks cannot be determined. There-

fore, two tasks should be created. This has already

been done during functional testing via test case b.

(4) The task cannot be dynamically created.

This concludes the unit testing of the task PLAYER.

Next is a description of the test cases for integration

Lr . . - .. . . . . ... p. .............. .. ,. , . o ,. , . ,, . . ..-. ..... ,.........., - ., ,
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98

(4) The exception handler is designed for the predefined

exception CONSTRAINT ERROR. Two lower level rou-

tines, LEVEL_2 and LEVEL_3, can propagate a

CONSTRAINTERROR exception to LEVEL_1. One statement

is ident. ied in each of the lower level procedures

that causes the CONSTRAINT ERROR exception to be

raised to LEVEL_1. In LEVEL_2 the statement is

number 42. Test case 4a will cause it execution. I

will equal 114. In LEVEL_3 the statement is number

54. Test case 4b will cause ts execution. Y will

equal 101.

5.4. Tasks

The sample routine and test cases for this case study

are located in Appendix D.

Three tasks are defined in procedure RACE. One,

PLAYER, is a family of tasks. It is the focus of this

case study. Any number of players (task PLAYER) can take

part in the race. The other two tasks are SCORER and

DEALER. Each entry call/ACCEPT statement in the tasks are

lettered. This will help show the pair-wise rendevous.

The testing of the task PLAYER occurs first at the

unit testing level. Functional and structural test cases

are shown before the test cases that result from following

the supplemental guidelines for tasks.

.2 .7 f
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SAMPLE ROUTINE

procedure LEVEL 1(A : in out INTEGER;
B : in out INTEGER;
C : in out INTEGER;
D : in out INTEGER;
TABLE : in out X ARRAY);

procedure LEVEL_2(F : in out INTEGER;
G : in out INTEGER;
GROUP : in out XARRAY);

procedure LEVEL_3(Y : in out INTEGER;
LIST : in out XARRAY);

procedure LEVEL_1(A : in out INTEGER;
B : in out INTEGER;
C : in out INTEGER;
D : in out INTEGER;
TABLE in out XARRAY) is

Li ERROR : exception;
L3 ERROR : exception;
MAX A : INTEGER 100;
MAX-D : INTEGER 500;

1 begin {LEVEL 11
2 case A is
3 when 1..5 => A A * 3;
4 when 6..30 => A A - 15;
5 when others => A A + 10;
6 end case;

begin {block for exception handler)

7 if A > MAXA
8 then
9 raise LIERROR;

end if;
10 TABLE(A) := C + D;
11 D := D + 50;
12 if D > MAX D
13 then
14 raise LiERROR;

end if;
15 C := A * B;
16 if C = 50
17 then
18 raise CERROR;

end if;
19 LEVEL 2(A, B, TABLE);
20 B A ** C;
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21 exception
22 when Li ERROR =>
23 if A > MAXA
24 then
25 A := 10;

end if;
26 if D > MAXD
27 then
28 D := 15;

end if;
29 when CONSTRAINTERROR =>
30 A 1;
31 when NUMERIC ERROR =>
32 raise;
33 when L3 ERROR =>
34 A
35 end; [block for exception handler}
36 end LEVEL 1;

procedure LEVEL 2(F : in out INTEGER;
G : in out INTEGER;
GROUP in out XARRAY) is

L2 ERROR : exception;
MAXVALUE : INTEGER 150;
I : INTEGER;

begin {L6VEL_21
37 F := F + 2;

begin {block for exception handler)
38 if F + G > MAXVALUE
39 then
40 raise L2_ERROR;

end if;
41 I := F + G;
42 GROUP(I) := F * G + 1;
43 LEVEL_3(F,GROUP);
44 exception
45 when L2_ERROR =>
46 F 5;
47 G 10;
48 end; {block for exception handlerl
49 end LEVEL 2;

- procedure LEVEL_3(Y in out INTEGER;
LIST in out XARRAY) is

* 50 begin { LEVEL_31
51 if Y > MAX-A + 1
52 then

.........................................
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53 raise L3_ERROR;
end if;

541 LIST(Y) :=Y -3;
55 end LEVEL_3;
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SAMPLE TEST CASES

UNIT TESTING

Functional Test Cases

A B C D
(a) 5 20 10 150
(b) 20 7 5 10
(c) 32 2 12 500

Structural Test Cases

(d) 120 3 2 1
(e) 25 5 3 3

Supplement Test Cases

(la) 15 3 3 3
(Ib) 33 1 100 2

(Ic) Driver to raise L3_ERROR.

(2) Already Satisfied

(3) Already Satisfied

(4) Already Satisfied

INTEGRATION TEST CASES

Functional Test Cases

Execute test cases a-c from above

Supplement Test Cases

A B C D

(1) No test cases produced

(2) No test cases produced

(3) 90 3 2 2

(4a) 4 90 10 10
(4b) 89 13 6 7

i
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SAMPLE ROUTINE

with TEXTIO; use TEXTIO;

procedure RACE is

type MEMBERS is INTEGER range 1..1000;

task SCORER is
entry ADD(MEM : in MEMBERS;

TOT : in out INTEGER);
entry SUB(TOT : in out INTEGER);

end SCORER;

task DEALER is
entry WINNER(MEM : in MEMBERS;

TOT : in INTEGER);
end DEALER;

task type PLAYER is
entry ID(MEM : in MEMBERS);

end PLAYER;

type TABLE is array (MEMBERS) of PLAYER;
GROUP : TABLE;
GAME : TEXT IO.FILETYPE;

task body SCORER is
begin {SCORER}

loop
select

(a) accept ADD(MEM : in MEMBERS;
TOT : in out INTEGER) do

TOT := TOT + 2;
if TOT > 25
then

(b) DEALER.WINNER(MEM,TOT);
end if;

end ADD;
or

(c) accept SUB(TOT : in out INTEGER) do
TOT := TOT -1;

end SUB;
end select;

end loop;

end SCORER;

task body DEALER is

ID MEMBERS;
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begin {DEALER}
for INDEX in MEMBERS

loop
(d) GROUP(INDEX).ID(INDEX);

end loop;
(e) accept WINNER(MEM : in MEMBERS;

TOT : in INTEGER) do
put(GAME,"The winner is ");
put (GAME,MEM, 4);
put(GAME," with a score of ");
put (GAME,TOT, 2);

end WINNER;
end DEALER:

task body PLAYER is

IDENTITY : MEMBERS;
SCORE : INTEGER := 0;

begin {PLAYER}
(f) accept ID(MEM : in MEMBERS) do

IDENTITY := MEM;
end ID;
loop

(g) SCORER. ADD(IDENTITI,SCORE);
delay 0.25;

(h) SCORER. SUB(SCORE);
delay 0.25;

end loop;
end PLAYER;

begin {RACE}
create (GAME,OUTFILE, "race.out" );

end RACE;

SAMPLE TEST CASES

UNIT TESTING

Functional Test Cases

(a) type TABLE is array (1..1) of PLAYER;

(b) type TABLE is array (1..2) of PLAYER;

Structural Test Cases

Structural metric met by functional test cases

Supplement Test Cases
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(1) Already Satisfied

(2) Not Applicable

(3) Already Satisfied

(4) Not Applicable

INTEGRATION TESTING

Functional Test Cases

Execute functional test cases a and b from above.

(c) type TABLE is array (MEMBERS) of PLAYER;

Supplement Test Cases

(1) No test cases produced

(2) Already Satisfied
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